
PC Software
for Color Analyzer

Programming Guide

CA-SDK
Ver.4.10

●Note that this manual abbreviates product names as follows.

Name Given in This Manual Official Name
VB, Visual Basic Microsoft® Visual Basic

Windows Microsoft® Windows®

Windows 98 Microsoft® Windows® 98 Operating System Second Edition

Windows Me Microsoft® Windows® Millennium Edition Operating System

Windows 2000 Microsoft® Windows® 2000 Professional Operating System

Windows XP Microsoft® Windows® XP Professional Operating System

Windows Vista Microsoft® Windows® Vista Business Operating System

●Trademark Notices
▪ Microsoft and Windows are registered trademarks of the Microsoft Corporation, in the US and in other countries.

▪ Other company names and product names that appear within this manual are trademarks or registered trademarks of their respective

companies.

●Notes on this Manual
▪ Copy or reproduction of all or any part of the contents of this manual without Konica Minolta’s permission is strictly prohibited.

▪ The contents of this manual are subjects to change without prior notice.

▪ Every effort has been made in the preparation of this manual to ensure the accuracy of its contents. However, should you have any

questions or find any errors, please contact a Konica Minolta authorized service facility.

▪ Konica Minolta will not accept any responsibility for consequences arising from the use of the software.

 0

Contents
Foreword ... 1
System Requirements .. 1
Notes on Use of SDK .. 1

1. How to Install (or Uninstall) the SDK... 2
2. SDK Object Hierarchy .. 3

2.1 Object, Collection.. 4
2.2 Method... 5
2.3 Property ... 5
2.4 Event.. 5
【Reference】Overview of the SDK's Objects and Their Methods, Properties, and Collections................. 6

3. Writing Programs with the SDK.. 9
3.1 Basics... 9

3.1.1 Using the SDK to Create a Program: Overview（Single Probe）.. 9
3.1.2 Application Setup (CA200Srvr Type Library) .. 11
3.1.3 Set up the CA-200(Create object variables) .. 12
3.1.4 Setting Up and Managing the CA-200 Configuration ... 13
3.1.5 Assignment of the object variables (generation) ... 14
3.1.6 Set the measurement conditions .. 14
3.1.7 Executing Measurement and Getting the Results .. 16
3.1.8 Multi-Unit USB Connection.. 19

3.2 Applications... 21
3.2.1 Managing CA-200 Calibration and CA-200 Calibration Data .. 21
3.2.2 Processing that need to be done before an arbitrary calibration channel is used......................... 26
3.2.3 Zero-Calibration Event Processing.. 28
3.2.4 Obtaining the hardware information of the connected probes... 29
3.2.5 Errors: Likely Causes and Appropriate Responses.. 29

4. SDK Reference.. 31
4.1 Ca200 Object ... 33
4.2 Cas Collection ... 40
4.3 CＡ Object.. 48
4.4 Memory Object.. 83
4.5 Probes Collection... 93
4.6 OutputProbes Collection.. 99
4.7 Probe Object .. 108
【Supplement】 About the Measurement Result Property.. 110

4.8 IProbeInfo Object ... 123
5. Error Codes.. 127
6. Installing the USB Driver .. 129

 1

Foreword

The CA-SDK software development kit facilitates development of Windows-based applications for the
CA-200 color analyzer ("CA"). This SDK makes use of Microsoft's COM (Component Object Model)
architecture, but does not require developers to be knowledge about COM itself.
This manual assumes that developers are using Microsoft Visual Basic ("VB"). All programming examples
are in VB.

CA-SDK controls CA-210 series and CA-100Plus in CA-200 mode. This manual describes all
of the compatible models as "CA-200".

“Flicker measuring” is the function only for the CA-210 with LCD Flicker Measuring Probe,
CA-P12/15 or Small LCD Flicker Measuring Probe, CA-PS12/15. All of description about
“Flicker measuring” are applicable to only the CA-210 with these probes.

System Requirements

This SDK requires the following environment.
 DOS/V computer running the Windows 98, Windows ME, Windows 2000, Windows XP, or

Windows Vista operating system.
 COM-compliant development tools (VB, etc.) installed on the computer.
 The computer must be equipped with an RS-232C port or a USB1.1-compliant USB port.

Notes on Use of SDK

When the PC connection is USB, running the application software by CA-SDK without CA-200 connected
may cause to abort because of the runtime-error. In this case, please connect CA-200.

If the USB connecting cable is getting loose or disconnected while the application software is running, the
application software will cause to abort because of the runtime-error, even if you connect it again while the
application software is running. If the USB connecting cable gets disconnected and the USB connection error
occurs, please end the application software first, then connect the USB connecting cable, and then restart the
application software.

CA-SDK supports only “32-bits mode” of the application software. When you develop an
application software, you need certify “32-bits mode”.

 2

1. How to Install (or Uninstall) the SDK

If an older version of the SDK has been installed, you need to uninstall it before installing this
version.

In the case of installing or uninstalling the SDK to the computer that is capable of autorun function

① Insert the SDK's Setup disk into the computer's CD-ROM drive.
 The Setup Program (automatic installation) will start and now carry the installation.
 Follow the instructions displayed on the screen.
 Remarks: If the SDK already installed, automatic uninstallation will start.

 If you don’t wish to uninstall the SDK, please cancel the setup program.

In the case of installing the SDK to the computer that is not capable of autorun function, or failing automatic
installation, try the manual operated installation as explaining below

① Insert the SDK's Setup disk into the computer's CD-ROM drive.
② Click the Start button, and select Run.
③ Click the Browse button. In the Browse dialog, set Look in: to the drive letter corresponding to the

drive holding the Setup disk, and then select Setup.exe from the file list. Then click the Open button.
④ Confirm that Setup.exe is now shown in the Open: text box, and then click OK to start the installation.

Note: If you are connecting to the CA units by USB, you must also install the CA-200 USB driver. For

information, refer to Section 6, "Installing the USB Driver."

In the case of uninstalling the SDK from the computer by the manual operation
 If you wish to uninstall the SDK, use the general method for uninstalling a program (the Add/Remove applet

in the Control Panel).

Additional information on installing/uninstalling the SDK under Windows 2000, Windows XP, or Windows
Vista:
 When installing or uninstalling the SDK on Windows 2000, Windows XP, or Windows Vista, be sure that

you are logged in with Administrator rights.
 If you are not sure of the current access rights, check with your system administrator.

 Related points:
 After installation, problems may occur if a user with limited rights attempts to change the pattern-generator

settings when using the sample software to control a pattern generator. In this case, it is necessary to give the
user suitable access permission for the SDK installation folder/files.

Setting example 1: The subject user should be given "Full control" access to the top-level SDK
installation folder (the default top-level installation folder is normally
"C:¥Program Files¥CA-SDK").

 In addition, problems may occur if a restricted user attempts to use a development tool to open a sample

software project and perform work.
 If a problem does occur, after setting the above access permissions, perform the following sequence of

works twice.
Sequence of works: Check that the project can be opened normally when using Administrator rights. If

it can, close the project and restart the computer.
(Repeat this sequence twice.)

3

2. SDK Object Hierarchy

Object Hierarchy
This SDK exposes its capabilities by means of objects created in accordance with Microsoft's COM
specifications. The objects exposed by this SDK implement a dual interface and support automation.
The following diagram shows the hierarchy of the objects exposed by the SDK.

●SingleCa

★SetConfiguration
★AutoConnect

●Count
●Item
●ItemOfNumber

★SendMsr
★ReceiveMsr
★SetCaID

●Probe ●BrightnessUnit
●OutputProbe ●CAType
●Memory ●CAVersion
●DisplayProbe ●Number
●SingleProbe ●PortID
●SyncMode ●ID
●DisplayMode ●RemoteMode
●DisplayDigits ●CalStandard
●AveragingMode

★CalZero ★SetLvxyCalData
★Measure ★SetAnalyzerCalMode
★SetAnalogRange ★ResetAnalyzerCalMode
★GetAnalogRange ★SetAnalyzerCalData
★SetFMAAnalogRange ★Enter

●Property ★GetFMAAnalogRange ★SetLvxyCalMode
★Method ★SetPWROnStatus ★ResetLvxyCalMode
■Event ★SetDisplayProbe

■ExeCalZero

●ChannelNO
●ChannelID

★GetReferenceColor
★SetChannelID
★GetMemoryStatus
★CheckCalData
★CopyToFile
★CopyFromFile

●Count ●RD/RJEITA/RFMA/RAD ●sx/sy
●Item ●X/Y/Z ●ud/vd
●ItemOfNumber ●Lv/LvfL ●T/duv

●LsUser/usUser/vsUser/dEUser ●FlckrFMA
★SetProbeID ●FlckrJEITA ●ID

●Number ●SerialNO
●R/G/B

★GetSpectrum

●Count ●RD/RJEITA/RFMA/RAD ●sx/sy
●Item ●X/Y/Z ●ud/vd
●ItemOfNumber ●Lv/LvfL ●T/duv

●LsUser/usUser/vsUser/dEUser ●FlckrFMA
★Add ●FlckrJEITA ●ID
★AddAll ●Number ●SerialNO
★RemoveAll ●R/G/B
★Clone ★GetSpectrum

OutputProbes Collection

Probes Collection

IProbeInfo Object

●TypeName
●TypeNo

Probe Object

IProbeInfo Object

●TypeName
●TypeNo

Probe Object

CA200 Object

CAS Collection

ＣＡ Object

Memory Object

4

2.1 Object, Collection

Ca200 Object
This is the SDK's application object. The Ca200 object sets up the configuration of the connected CA-200
units. When you use the object's methods to set up the configuration, the software automatically instantiates
and initializes the relevant lower-level objects (Cas level and below). These lower-level objects are then used
to control the measurement system.
The Ca200 object itself is the only object that is generated explicitly by the application.

Cas Collection
If you are using multiple CA-200 units, the Cas object is the collection of the Ca objects corresponding to
these CA-200 units. The Cas collection is accessed as a property of the Ca200 object. When you need to
control a specific CA-200, you first must get that CA-200 using the appropriate method or property of the Cas
collection.

Ca Object
Each Ca object controls a connected CA-200 unit. Specifically, this object exposes most of the physical
CA-200 unit's control features. To control the CA-200, you use the properties and methods of the Ca object.

Memory Object
You use the Memory object to operate on the memory channels of the corresponding CA-200. The Memory
object exposes the features supported through the CA-200 memory channels.

Probes Collection
This is a collection of the Probe Objects in the configuration where two or more probes are connected. The
Probes Collection is obtained as Ca Object’s Property. Probe Objects that are compliant with the connected
probes are obtained using Property/Method of the Probes Collection.

OutputProbes Object
If you have multiple output probes connected to a single CA-200, the OutputProbes object is the collection
of the Probe objects corresponding to these probes. The OutputProbes object is accessed as a property of
the Ca object. To get the Probe object for a specific probe, you use the relevant property or method of the
OutputProbes collection.
For any given CA-200, the OutputProbes object is the collection of the Probe objects corresponding to
the probes that have been designated as the CA-200's output probes. The OutputProbes object is accessed
as a property of the Ca object. You use the methods and properties of the OutputProbes object to get, add,
and remove output probes.
While Probe objects can also be referenced as members of the Probes collection, when getting
measurement results you should reference them as members of the OutputProbes collection.

Probe Object
Each probe on a CA-200 unit is represented by a Probe object. The Probe object serves as the container for
the output probes results, and exposes these results to the application. To get measurement results, you use the
properties and method of the Probe object.

IProbeInfo Object
This is a container of the hardware information for each probe of CA-200. The IprobeInfo Object provides
the hardware information of CA-200. The Property of the Probe Object will be used for referring to the
measurement results.

5

2.2 Method

Each Object/Collection includes Method (function).
The details of each Method are explained in 「4. SDK Reference」.

2.3 Property

Each Object/Collection includes Property.
Each Property has either both of the ① obtainment function and ② setting functions or one of the functions.
The details of each Property are explained in 「4. SDK Reference」.

2.4 Event

There is ExeCalZero among the CA Object. The details are explained in 「4. SDK Reference」.

6

【Reference】Overview of the SDK's Objects and Their Methods, Properties, and Collections

The following is a listing and brief description of the objects provided by the SDK. The listing shows the
SDK objects and their methods, properties, and collections.

Ca200 Object

Properties / Collections:
Cas Collection of connected CA-200
SingleCa Gets CA-200 that was set up using the AutoConnect method

Methods:
SetConfiguration Sets the CA-200 configuration
AutoConnect Automatically sets configuration to: USB connection, single

CA-200, single probe

Cas Collection

Properties:
Item Gets the designated CA-200 from the CA-200s collection (by

index value or ID name)
Count Gets the count of the connected CA-200s
ItemOfNumber Gets the designated CA-200 from the CA-200s collection (by

ID number)
Methods:

SendMsr Sends the Measure command to all connected CA-200s
ReceiveMsr Gets measurement results from all connected CA-200s
SetCaID Sets the name to the designated CA-200

Ca Object

Properties / Collections:
Probes Collection of probes connected to the CA-200
OutputProbes Collection of those connected probes that are designated as

output probes
Memory Gets the CA-200's memory channels
DisplayProbe Sets or gets the CA-200's display probe
SingleProbe Gets probe that was configured using the AutoConnect

method
SyncMode Sets or gets the CA-200's sync mode
DisplayMode Sets or gets the CA-200's display mode (measuring mode)
DisplayDigits Sets or gets the display-digits settings (the number of digits

used in the CA-200's display)
AveragingMode Sets or gets the CA-200's averaging mode (measurement rate)
BrightnessUnit Sets or gets the dimensional unit that the CA-200 uses for its

brightness display
CAType Gets the CA-200's product type
CAVersion Gets the CA-200's product firmware version information
Number Gets the CA-200's ID No.
PortID Gets the CA-200's comm port ID
ID Sets or gets the CA-200's ID name
RemoteMode Sets the CA-200's Remote mode ON or OFF
CalStandard Sets or gets the CA-200's Calibration Standard

7

Methods:
CalZero Zero-calibrates the CA-200
Measure Executes measurement
SetAnalogRange Sets the CA-200's analog display range
GetAnalogRange Gets the CA-200's analog display range
SetFMAAnalogRange Sets the analog display range used by the CA-200 for flicker

measurement（Only the applicable model）
GetFMAAnalogRange Gets the analog display range used by the CA-200 for flicker

measurement（Only the applicable model）
SetPwrONStatus Establishes the CA-200's current settings as its power-on

settings
SetDisplayProbe Selects the probe whose results will be displayed on the

CA-200's screen
SetAnalyzerCalMode Sets the CA-200 to display-characteristics input mode
ResetAnalyzerCalMode Switches the CA-200 from display-characteristics input mode

back into normal mode
SetAnalyzerCalData Executes input of calibration data (measurement data)
Enter Writes arbitrary calibration data or display-characteristics data

into memory
SetLvxyCalMode Sets the CA-200 into arbitrary calibration mode
ResetLvxyCalMode Switches the CA-200 from arbitrary calibration mode back

into normal mode
SetLvxyCalData Executes input of arbitrary calibration data (measured values

and calibration data)

Event:
ExeCalZero Notification that zero-calibration is required

Memory Object

Properties:
ChannelNO Selects one of the CA-200's memory channels, or returns the

current channel selection (where selection is expressed by the
channel's connector number)

ChannelID Selects one of the CA-200's memory channels, or returns the
current channel selection (where selection is expressed by the
channel's ID name)

Methods:
GetReferenceColor Gets the reference color (white) setting of the selected memory

channel
SetChannelID Sets an ID name for the selected memory channel
GetMemoryStatus Gets calibration information from the selected memory

channel
CheckCalData Compares the selected channel's calibration data against data

in the calibration data file
CopyToFile Copies the selected memory channel's calibration data to file
CopyFromFile Copies data from the calibration data file into the selected

memory channel

Probes Collection

Properties:
Item Gets the designated probe from the Probes collection (by

index value or ID name)
Count Gets the count of the connected probes
ItemOfNumber Gets the designated probe from the Probes collection (by ID

number)

Method:
SetProbeID Sets an ID name (alias) for a specified Probe object

8

Probe Object

Properties:
X, Y, Z Gets measurement result, as represented in XYZ color space
Lv, LvfL Gets brightness measurement result, in indicated units
sx, sy Gets measurement result, as represented in xy color space
ud, vd Gets measurement result, as represented in Lu'v' color space
T, duv Gets correlated color temperature or difference from

black-body locus, as represented in uv color space
R, G, B Gets analyzer-mode measurement results
LsUser, usUser, vsUser Gets measurement result, as represented in L*u*v* color

space
FlckrJEITA Gets flicker quantity, as measured using the JEITA method.*1

[Available only on CA models that support this feature.]
FlckrFMA Gets flicker quantity, as measured using the FMA method

(AC/DC method).*2 [Available only on CA models that
support this feature.]

Number Gets the probe's ID number
ID Sets or gets the probe's ID name
SerialNO Gets the probe's serial number
RD/RJEITA/RFMA/RAD Gets color value, flicker quantity as measured using the JEITA

method*1 , flicker quantity as measured using the FMA method
(AC/DC method)*2 , and status code of analyzer-mode
measurement [Available only on CA models that support this
feature.]

GetSpectrum Gets the frequency components of flicker as measured using
the JEITA method*1 [Available only on CA models that
support this feature.]

 *1. JEITA flicker method
*2. Contrast flicker method

OutputProbes Collection

Properties:
Item Gets the designated probe from the OutputProbes collection

(by index value or ID name)
Count Gets the count of the connected output probes
ItemOfNumber Gets the designated probe from the OutputProbes collection

(by ID number)
Method:

Add Establishes the specified probe as an output probe
AddAll Establishes all connected probes as output probes
RemoveAll Removes all output probes
Clone Gets copy of OutputProbes collection

IProbeInfo Object
Properties:

TypeName Obtains a character string that indicates the type of the
connected probes

TypeNO Obtains a value that indicates the type of the connected probes

9

3. Writing Programs with the SDK

The sample code shown in this section includes a number of symbolic constants that are not explicitly explained.
For details about parameter usage in methods and properties, see Section 4, "SDK Reference."

3.1 Basics

3.1.1 Using the SDK to Create a Program: Overview（Single Probe）

Basic procedures and examples of simple programming when the number of main body: 1, the number of
Probe: 1 and PC connection: USB are shown below (Please refer to each page for the details).
Please make sure to execute ①～④, which are processing necessary for sound recognition on the program.

1. Each program comprises the following steps.

①Application Setup (CA200Srvr Type Library) (Please refer to P. 11)
②Declare the SDK object variables (variables that represent the actual measuring instruments and probes).

(Please refer to P. 13)
③Set the CA-200 configuration (Number of CA-200, and number of connected probes).

(Please refer to P. 14)
④Set up the CA-200.'Create object variables. (Please refer to P. 15)
⑤Set the measurement conditions. (Please refer to P. 15)
⑥Execute measurement. (Please refer to P. 17)
⑦Get the measurement results. (Please refer to P. 17)
⑧Process the measurement results.
⑨Calibration . (Please refer to P. 21)
⑩Carry out relevant error processing. (Please refer to P. 29)

2. Example of a Simple Program (for a single probe)

②Declare the SDK object variables.
Public objCa200 As Ca200 'Application object
Public objCa As Ca 'CA-200 object
Public objProbe As Probe 'Probe object
Public objMemory As Memory 'Memory object

On Error GoTo Er 'Set the error trap

③Set the CA-200 configuration.
'Create the application object.
Set objCa200 = New Ca200

'Set the configuration (automatic configuration).
objCa200.AutoConnect '1 CA-200, 1 probe, USB connection

④Set up the CA-200.
'Create object variables.
Set objCa = objCa200.SingleCa 'CA-200 object
Set objProbe = objCa.SingleProbe 'Probe object
Set objMemory = objCa.Memory 'Memory object

'Send zero-calibration start message to operator. (Code is omitted.)

'Run zero-calibration.
objCa. CalZero

10

⑤'Set the measurement conditions.
objCa.SyncMode = 3 'Set sync mode to UNIV sync.
objCa.AveragingMode = 2 'Set measuring rate to AUTO.
objCa.SetAnalogRange 2.5, 2.5 'Set analog display range to 2.5% units.
objCa.DisplayMode = 0 'Set display/measurement mode to Lvxy.
objMemory.ChannelNO = 0 'Set memory channel to 0 (Konica Minolta calibration).

⑥Execute measurement.
'Send start message. (Code is omitted.)

'Execute measurement.
objCa.Measure

⑦Retrieve the measured data.
'Declare the measurement data variables.
Dim fLv As Single

Dim fx As Single

Dim fy As Single

'Load measurement values into measurement data variables.
fLv = objProbe.Lv

fx = objProbe.sx

fy = objProbe.sy

⑧Process the measurement data.
'Data display processing, etc. (Code is omitted.)

⑨Calibration.
 'Processing at time of calibration (Please refer to P. 22.)

⑩Carry out relevant error processing.
 'Processing at time of error (Please refer to P. 27.)
Er:

 Dim strERR As String

 Dim iReturn As Integer

 strERR = "Error from " + Err.Source + Chr$(10) + Chr$(13)

 strERR = strERR + Err.Description + Chr$(10) + Chr$(13)

 strERR = strERR + "HRESULT " + CStr(Err.Number - vbObjectError)

 iReturn = MsgBox(strERR, vbRetryCancel)

 Select Case iReturn

 Case vbRetry: Resume

 Case Else:

 objCa.RemoteMode = 0

 End

 End Select

11

3.1.2 Application Setup (CA200Srvr Type Library)

① Start up VB, and create the project to be used for the application development.
② At the Project menu, select References.

③ In the Available References list, place a check next to CA200Srvr 1.0 Type Library. Then click the

OK button.

The application will now be able to utilize the SDK functions.

You can also use the VB object browser to view SDK object information, by proceeding as follows.

① At the View menu, select Object Browser.

12

② In the list box, select CA200SRVRLib.

③ In the Classes and Members viewing areas, click the relevant Class or Member entry to view the
corresponding information.

3.1.3 Set up the CA-200(Create object variables)

This section presents an overview of the SDK's features and usage. For related information, refer also to
Section 2, "SDK Object Hierarchy."

In VB programming, the programmer manipulates VB-specific objects by using the properties and
methods exposed by these objects. Programming with the SDK follows the same principle: the SDK
exposes various objects, and the programmer uses VB to manipulate these objects by means of the
properties and methods exposed by these objects.
The objects exposed by this SDK are designed to model the configuration, operation, and environment
of a physical CA-200 setup. If you understand how to use the CA-200 hardware, usage of the SDK
objects should be very straightforward.
You begin a program by instantiating SDK objects (object variables) so as to create a representation of
the CA environment that you are working with. Once defined, these variables will remain in existence
and available throughout the life of the program. Accordingly, these variables must be declared as
globals.

Example: Declaration of SDK Object Variables

Public objCa200 As Ca200 'Application object
Public objCa As Ca 'CA-200 (instrument) object
Public objProbe As Probe ' Probe object
Public objMemory As Memory ' Memory object

13

Please note the following points.

• This SDK operates as a COM-compliant in-process server (produced in accordance with
Microsoft's COM standard). The SDK is packaged in DLL form, and cannot be used as
standalone software.

• This SDK is designed on the premise that it will be used from a single client. It is not designed
for multithread usage, or for use with Microsoft's MTS.

• Although the SDK is COM-compliant, it is assumed that the programmer will use the SDK
objects in accordance with the object hierarchy explained in Section 2, "SDK Object Hierarchy."

3.1.4 Setting Up and Managing the CA-200 Configuration

This section explains how to write program code to set up and manage CA-200 configurations for a variety
of usage environments and objectives.

Usage environments and objectives can vary significantly. In some cases you can meet your needs
using a single CA-200 unit, while in other cases you will need to control multiple CAs. Similarly, you
may or may not need to control multiple probes on each CA-200. (Each CA-200 can connect up to five
probes.) Accordingly, your program must set up the appropriate CA configuration—specifying how
many CA-200s to use, and how many probes to connect up to each. Similarly, the appropriate type of
management to carry out with respect to this connected hardware will also vary according to your
specific objectives.

To configure the CA-200s, you use one of the following two methods of the CA200 object.

• AutoConnect method
• SetConfiguration method

The AutoConnect method is for straightforward, simple setups, and can only be utilized when you
are using a single CA-200 with a single probe, and where the connection between the computer and the
CA-200 is by USB. When you use this method, the SDK will detect the connection status and
automatically set up the appropriate configuration.

If you need to manage multiple CA-200s and/or multiple probes, then you must use the
SetConfiguration method to explicitly set the configuration. When using this method, you
explicitly set up and manage the CA-200 connection information and the probe connection information.
If the SetConfiguration method detects that the actual hardware configuration conflicts with your
configuration setup information, it will terminate with an error.

The following examples show how to use the SetConfiguration method to connect up two
different configurations. In the first example, the method is used to configure a single CA-200 with five
probes, using USB connection. In the second example, the method sets up three CA-200s, each with
multiple probes. (For detailed information about the SetConfiguration method, refer to
explanation of this method in Section 4, "SDK Reference", below.)

Example 1: USB connecting one CA-200 with five probes

' Create the application object.

Set objCa200 = New Ca200

' Set the configuration.

objCa200.SetConfiguration 1, "12345", 0 ‘USB

Note that the method sets the CA's ID No. to 1—which means that it sets the CAID property of the
instantiated Ca object to "CA1". The method also sets up connection of five probes to be connected to
probe numbers 1 to 5. It does this by instantiating five Probe objects, each with a corresponding ID
property value (from "P1" to "P5").

14

Example 2: COM1, COM2, or COM3 connecting three CAs, each having four probes

' Create the application object.

Set objCa200 = New Ca200

' Set the configuration.

objCa200.SetConfiguration 1, "1234", 1 ,38400 ‘COM1
 objCa200.SetConfiguration 2, "1234", 2 ,38400 ‘COM2
 objCa200.SetConfiguration 3, "1234", 3 ,38400 ‘COM3

In this example, the method instantiates three Ca objects—one for each of the three CAs. Consider the
first CA (the CA connected to COM1). The method assigns ID No. 1 to this CA—which means that it
sets the CAID property of the corresponding Ca object to "CA1". It also specifies that four
measurement probes are to be connected to CA probe connectors 1 to 4—which means that it
instantiates four Probe objects for this Ca object, and sets the ID property for the first Probe objects
to "P1", for the second to "P2", and so on. The method sets up the other two Ca objects in similar
fashion.

Further, all three of these instantiated Ca objects are automatically added as members to the Cas
collection; and within each Ca object, each instantiated Probe object is automatically added to the
Probes collection. The generated CAID and probe ID property values can then be used to target and
operate on the relevant objects within these collections (as explained starting from Section 3.1.6,
below.)
Provided that the configuration information set by the method matches the actual hardware configuration,
the method's setup operation terminates normally and the program can thereafter use the various objects
to control the operation of the CAs and probes.

3.1.5 Assignment of the object variables (generation)

An assignment of the object variables always need to be done after executing 「3.1.3 Declaration of the
SDK object variables」 and 「3.1.4 Generation of the SDK application object and setting the
configuration」.

 ‘Generating objects to object variables.
 Set objCa = objCa200.SingleCa ‘CA-200 objet
 Set objProbe = objCa.SingleProbe ‘Probe object
 Set objMemory = objCa.Memory ‘Memory object

3.1.6 Set the measurement conditions

This section explains how to use write code to set up a CA-200 unit in preparation for taking
measurements.

Before executing measurement, you need to set each CA-200 so that it will carry out the appropriate
type of measurement operation. Setup involves three basic steps, as follows.

① Zero-calibration

Zero-calibration must be carried out on the CA-200 after the CA-200 has stabilized. Attempts to take
measurements with a CA-200 that is not zero-calibrated will return an error.

② Setting of general measurement parameters (permanent and semi-permanent settings)

• Measurement Sync Mode
• Measurement Speed
• Brightness Display Unit
• Number of Display Digits
• Analog Range Setting (for color or flicker measurement)
• Calibration channel (the default [Konica Minolta] calibration standard)

15

When using the SDK to set up a CA-200, you use the Ca object's zero-calibration method to run zero
calibration; and you use the object's various properties to enter the relevant settings. The following table
shows the correspondence.

Action or Setting Corresponding method or property of Ca object

Zero Calibration CalZero()

Measurement Sync Mode SyncMode

FAST/SLOW Mode AveragingMode

Brightness Unit BrightnessUnit

Number of Display Digits DisplayDigits

Analog Range (for color measurement) SetAnalogRange()

Analog Range (for flicker measurement) SetFMAAnalogRange()

Default (Konica Minolta) calibration CalStandard

The following example shows how to carry out the above-described setup. The example begins by
zero-calibrating the CA-200 (using the Ca object's CalZero method). It then uses the object properties
shown above to set the CA-200 as follows: use NTSC sync; use Auto measurement speed; use cd/m2

display unit; use 3-digit display; use 9300K calibration standard.

Note that the example does not set the Analog Range. The Analog Range setting is required only if you
are using the CA-200 unit's analog display.

Example: Setting Up a CA-200

' Set up the CA-200.

' ① Run zero-calibration.

objCa.CalZero

' ② Enter (semi-)permanent parameter settings.

With objCa

.SyncMode = 0 'Set to NTSC sync.

.AveragingMode = 2 'Set measurement rate to Auto.

.BrightnessUnit = 1 'Set brightness display unit to cd/m2.

.DisplayDigits = 0 'Set to 3-digit display.

.CalStandard = 2 'Set to 9300K calibration standard.
End With

③ One-Time Settings

For information about settings that tend to change for each measurement cycle, refer to the section
immediately below.

16

3.1.7 Executing Measurement and Getting the Results

This section explains how to write program code to execute measurements and retrieve the measurement
results.

A number of settings tend to change frequently with each measurement cycle. Before taking measurement,
you need to change these settings as necessary. Typical one-time settings include the following.

• What to measure? … Set the display mode (measurement mode).
• Where to measure? … Select the output probe.
• Which calibration data to use? … Select the memory channel.

If you intend to use the CA-200's own analog display, then you also need to set the following:

• Display data from which probe? … Select the display probe.

Setting the Display Mode (Measurement Mode)

The CA-200 can measure and display a variety of items. The two main measurement types are:

① Measurement of color/brightness
② Analyzer-mode measurement

In addition, some CA models also support the following:

③ Flicker measurement

When measuring color or brightness, you can select from a variety of available display methods
(color spaces). When using analyzer-mode measurement (a Konica Minolta proprietary feature that
enables simple white adjustment), you can select from three display methods. For flicker
measurements, you can choose from two measurement methods.

The selection of the display mode (measurement mode) determines the type of measurement that
the CA-200 will carry out, and also determines which of the Probe object properties will be
updated with the measurement results. The following table shows the relationships.

Measurement Type Display Mode Updated properties in the Probe
object

XYZ
(Value in XYZ color space)

xyLv
(Chromaticity in Lvxy color space)

L*u*v* color-space chromaticity

T⊿uv
(corrected color temp. and divergence

from black-body locus, in uv color
space)

Color / Brightness

u'v'Lv
(Chromaticity in u'v' color space)

X, Y, Z, Lv, sx. sy, ud, vd,
T, LsUser, usUser, vsUser,

dEUser, duv

No analog display
G-based analog display Analyzer Mode

R-based analog display

R, G, B

AC/DC-method flicker value FlckrFMA
Flicker*3

JEITA-method flicker value*1 FlckrJEITA

*1: For JEITA flicker measurement. results are not displayed on the CA-200 unit itself.
*2: The CA-200 unit does not display L*u*v* chromaticity or color difference.
*3: Only the applicable model
When using the SDK, you set the display mode (measurement mode) by setting the Ca object's
DisplayMode property.

17

Specifying the Output Probes

An output probe is a probe that has been set to output its measurement results data to the PC
through a communications channel. If you wish to execute control and data processing from the PC,
you need to designate the relevant probes as output probes. The output probe setup also affects the
speed with which the CA-200 transmits measurement responses to the PC: if you are carrying out
repetitive measurement and you need rapid response, you can speed up the response time by
limiting output probes to those that you need to work with. (If you have used the
SetConfiguration method to set the configuration, you must also designate output probes if
you wish to output the measurement results.)

To designate probes as output probes and to manage such designations, you use the properties and
methods of the OutputProbes object.

Specifying the Memory Channel

When using the SDK, you select the memory channel by setting the ChannelNO or ChannelID
property of the Ca object's Memory object. Setting the appropriate value into either of these
properties will implement the actual setting on the targeted CA-200.

Specifying the Display Probe

The CA-200 unit itself can display results from a single probe only. If you are using multiple
probes, therefore, you use the display probe setting to designate which of the probes is to be used
for the display. When using the SDK, you can specify the display probe using the Ca object's
DisplayProbe property.

The display probe setting also serves another purpose: it designates the probe that is calibrated
when you run a calibration. For information about calibration, see Section3.5, "Managing CA-200
Calibration and CA-200 Calibration Data."

After setting the one-time measurement parameters, you execute measurement using the Measure
method of the Ca object. Once measurement has been taken, the Ca object will automatically get the
results by communicating directly with the CA-200 via the communication channel, and these results
will then be written into the relevant Probe object properties, where they will be available to the
application. (For a listing of results properties of the Probe object, refer to the Probe object listing in
Section 2 above.)

Note that when you run the Measure method, only the relevant Probe object properties (the
properties corresponding to the currently selected display type) will be updated with the new results.
Unrelated properties retain the values they had before the method was executed.

In the programming example below, the program first executes the Zero-Calibration and then uses the
DisplayMode property to set the measurement mode to Lvxy. It then uses the Add method of the
OutputProbes collection to add three probes of " P1", " P2", and " P3"(the default ID names for
probe number 1, 2, and 3), as Probe objects, to the collection, thereby establishing the probes with
probe number 1, 2, and 3 as the CA-200's output probes. Next it uses the ChannelNO property of the
Memory object to 0 to select use of the default calibration data. The CA-200 is now set to measure
color and brightness, using its default calibration data for the calibration.

The program then executes the measurement by executing the Measure method.

Next, the program uses the Item property of the OutputProbes collection to designate the " P1", "
P2", and " P3" probe objects. It then gets results from those probes, using each Probe object's X, Y,
and Z properties get the XYZ tricolor stimulus values, and the x and y properties to get the Lvxy-space
x and y values.

Next, the program uses the RemoveAll method of the OutputProbes collection to remove all Probe
objects from the collection. It then changes the DisplayMode property to JEITA flicker display. Next, it
uses the Add method of the OutputProbes collection to add the " P2" probe's Probe object to the
collection—this time selecting only a single probe as the output probe. The code proceeds to execute
JEITA flicker measurement and to get the flicker measurement results from the " P2" probe. (Since
JEITA flicker measure generates a high communications data load, when taking repetitive flicker
measurements you may want to limit the number of output probes so as to increase the measurement
rate.)

18

Example: Program to Carry Out Measurement

'Generate application objects.
Set objCa200 = New Ca200

'Set the configuration.
objCa200.SetConfiguration 1, “123”, 0 ,38400

'USB, 3 probes with probe number 1, 2, and 3.

'Get the CA object.
Set objCa = objCa200.Cas.ItemOfNumber(1)

'Execute Zero-Calibration.
objCa.CalZero

'Measuring Routine
' Set one-time measurement parameters.
' Set the display mode (measurement mode).

objCa.DisplayMode = 0 'Set measurement mode to Lvxy.

' Select the output probes.

objCa.OutputProbes.Add("P1") ' Add " P1" as output probe.
objCa.OutputProbes.Add("P2") ' Add " P2" as output probe.
objCa.OutputProbes.Add("P3") ' Add " P3" as output probe.

' Set the memory channel.
' Use the memory channel having the default calibration data (channel 0).

objCa.Memory.ChannelNO = 0

' Execute measurement.

objCa.Measure

' Get measurement results data.
' Get XYZ data.

fX_R = objCa.OutputProbes.Item("P1").X
fY_R = objCa.OutputProbes.Item ("P1").Y
fZ_R = objCa.OutputProbes.Item ("P1").Z
fX_C = objCa.OutputProbes.Item("P2").X
fY_C = objCa.OutputProbes.Item ("P2").Y
fZ_C = objCa.OutputProbes.Item ("P2").Z
fX_L = objCa.OutputProbes.Item("P3").X
fY_L = objCa.OutputProbes.Item ("P3").Y
fZ_L = objCa.OutputProbes.Item ("P3").Z

' Get xy data.

fsx_R = objCa.OutputProbes.Item ("P1").sx
fsy_R = objCa.OutputProbes.Item ("P1").sy
fsx_C = objCa.OutputProbes.Item ("P2").sx
fsy_C = objCa.OutputProbes.Item ("P2").sy
fsx_L = objCa.OutputProbes.Item ("P3").sx
fsy_L = objCa.OutputProbes.Item ("P3").sy

' Change settings of one-time measurement parameters.
' Set the display mode (measurement mode).

objCa.DisplayMode = 8 'Set measurement mode to JEITA flicker.

' Set the output probes.

objCa.OutputProbes.RemoveAll
objCa.OutputProbes.Add("P2")

19

' Execute measurement.

objCa.Measure

' Get measurement results data.
' Get JEITA flicker data.

fFlckrJEITA = objCa.OutputProbes ("P2").FlckrJEITA

Note: About Index Values and ID Numbers

This SDK exposes three collections: Cas, Probes, and OutputProbes. For each collection, you use
the collection's Item property to refer to a specific object within that collection. The Item property
can take either of two arguments:

① The ID name of the targeted object (the CA, Probe, or OutputProbe object)
② The index value assigned to the object when it was placed in the collection

Note particularly that the index value is not identical to the object's ID number. For example, assume
that you set two probes "P2" and "P3" into the OutputProbes collection—where "P2" and "P3" are
the ID names for the probes, and the corresponding ID numbers are 2 and 3. But notice that while the
ID numbers for these probes are 2 and 3, the collection's index values for these probes will be 1 and 2.

ID numbers are fixed at the time the configuration is set up, and remain the same thereafter. Index
values, however, change according to the way objects are added to the collection.

3.1.8 Multi-Unit USB Connection

1. USB port number and response of connected CA units
* The CA-SDK recognizes USB ports with integer numbers 0 to 4. When only one CA unit is connected, the

USB port number is 0; when multiple units are connected, the port numbers are assigned in order from the
lowest-numbered port number of the USB hub.

* These numbers are assigned at the time connection to a CA unit is performed. If, when multiple CA units are
connected, an additional CA unit is connected, the port numbers will be reassigned in order from the
lowest-numbered port number of the USB hub.

* Because of this, when using an application, the CA units which will be controlled should be arranged in a
suitable configuration and switched on so that USB connection is completed before starting the application.
If an additional CA unit is connected after the application has been started, because of the reason given
above, the USB connection conditions will change, which could lead to problems with USB communication.
Please avoid this situation.

2. Measurement speed with multiple CA units connected

* The CA-SDK provides two ways to perform measurements with multiple CA units when multiple CA units
are connected.

 Sequential execution of the Ca::Measure method
 Execution of the Cas::SendMsr and Cas::ReceiveMsr methods

* For , the CA-SDK sends the measurement command to the CA unit, receives the measurement results, and

then returns from the method. Because of this, if the measurement speed was 15 times/second when using a
single CA unit, the measurement time would become approximately 7.5 times/second (15/2) when taking
simultaneous measurements using 2 CA units.

* For , the CA-SDK uses the Cas::SendMsr method to first send the measurement command to all CA
units. Then, the measurement results are received from each CA unit using the Cas::ReceiveMsr
method. Since the time required for sending the commands is much shorter compared to the time required by
the CA unit for measurements, all CA units will have started measurements before the measurement results
from the first CA unit are received. In addition, since at about the time the measurement results have been

20

received from the first CA unit, the measurement results for the next CA unit will be ready, the overhead for
simultaneous measurements using multiple CA units is much shorter than for .

* However, for , attention must be paid to the following points. The premise for communication with the
CA units is the pair of sending command and receiving the execution results. For CA-SDK methods other
than the Cas::SendMsr method and the Cas::ReceiveMsr method, execution of the method performs
the pair of sending command and receiving results, but for these two methods, executing the
Cas::SendMsr method sends the command, and executing the Cas::ReceiveMsr method receives
the results of the sent command. Because of this, it is necessary to always execute these two methods in
pairs. (The CA-SDK does not check if these methods are paired.) Because of this, the application should be
constructed so that even if an error occurs when executing the Cas::SendMsr method, the
Cas::ReceiveMsr method is always executed. (Please refer to 3. Sample Program below.)

3. Sample program

Example: 2 CA units connected via USB, with 5 probes connected to each CA unit
Dim objCa200 As Ca200
Dim objCas As Cas
Dim objCa1 as Ca
Dim objCa2 as Ca

On Error Goto Err

Set objCa200 = New Ca200

' Setting 2 CA units, 5 probes per unit, USB connection.
objCa200.SetConfiguration 1, “12345”, 0, 38400
objCa200.SetConfiguration 2, “12345”, 1, 38400
Set objCas = objCa200.Cas
Set ObjCa1 = objCas.ItemOfNumber(1)
Set ObjCa2 = objCas.ItemOfNumber(2)
objCa1.OutputProbes.AddAll
objCa1.OutputProbes.AddAll

' Execute zero calibration.
objCa1.CalZero
objCa2.CalZero

' Execute measurement with all CA units, and receive measurement results.
objCas.SendMsr
objCas. ReceiveMsr

（Code is omitted.）

Err:

' Even if error occurs for SendMsr, ReceiveMsr must be executed to complete the pair.
Resume Next

21

3.2 Applications

3.2.1 Managing CA-200 Calibration and CA-200 Calibration Data

This section explains how to use the SDK to calibrate CA-200s and to manage the calibration data.

CA-200 units are capable of three types of measurement: color/brightness measurement, analyzer-mode
measurement, and flicker measurement. Calibration for the color/brightness and analyzer-mode
measurements can be set up as follows.

For color/brightness measurement, the user can set user standard values for the color and brightness of
the target display, and then use these values as the basis for calibrating the CA-200. Within this manual,
this type of calibration is referred to as arbitrary calibration. One of the arbitrary calibration is
performing to each color of R, G, B, and W. In this manual, it is referred to as matrix calibration. The
other of arbitrary calibration is performing to only W. In this manual, it is referred to as white
calibration.
For analyzer-mode measurement, the CA-200 can be calibrated by writing into its memory standard R,
G, and B values obtained by measuring the target display in some standard operating state
(white-adjusted state, etc.). In this manual, this is referred to as display-characteristics input.
The SDK supports among matrix calibration, white calibration, and display-characteristics input. The
following table shows the steps required for carrying out matrix and white calibration, and the support
provided by the SDK.

Step CA-200 SDK

1 Set connector number of probe to be
calibrated.

Ca object
DisplayProbe property

2 Set display mode to Lvxy. Ca object
DisplayMode property

3 Set calibration channel number. Memory object
ChannelNO property

4 Enter arbitrary calibration mode. Ca object
SetLvxyCalMode property

5 Display R, G., B, or W calibration pattern.

6 Execute measurement. Ca object
Measure method

7
Input arbitrary calibration data. Specifically,
enter measurement results and Lv, x, and y
settings (user standard values).

Ca object
SetLvxyCalData method

8 Write arbitrary calibration data to memory. Ca object
Enter method

For matrix calibration, repeat steps 5 to 7 for each color R, G, B, and W, and then carry out step 8 to
write the results to memory. For white calibration, carry out the above procedure for W only.

The next table shows the steps required for carrying out display-characteristics input, and the support
provided for these operations by the SDK.

Step CA-200 SDK
Set connector number of probe to be
calibrated.

Ca object
DisplayProbe property 1

Set display mode to analyzer mode. Ca object
DisplayMode property

2 Set calibration channel number. Memory object
ChannelNO property

3 Enter analyzer calibration input mode. Ca object
SetAnalyzerCalMode method

4 Display R, G, B, or W calibration pattern.

5 Execute measurement. Ca object
Measure method

6 Input measurement results as
display-characteristics values.

Ca object
SetAnalyzerCalData method

7 Write arbitrary calibration data to memory. Ca object
Enter method

22

To complete the input, you must repeat steps 4 to 6 for each pattern (R, G, B, and W). The calibration process
itself terminates when you have completed the final iteration.

Once calibration (arbitrary calibration or display-characteristics input) has terminated normally, the
calibration information is written into the memory channel for the selected probe connector. The written
information includes: calibration mode information, the calibration data, the standard (white) data, and
the serial number of the calibrated probe.

Standard white setting can be carried out independently of arbitrary calibration or display-characteristics
input. To set the white setting independently, carry out the above procedure for the W pattern only. If you
are using arbitrary calibration mode, you can also input the numeric settings manually (W values only).
The following lists are the sample program for calibration attached in the SDK. (They are some parts of
the sample program for reference. So you cannot complete the calibration certainly, although you perform
all of them.)

Example: Executing Matrix Calibration and White Calibration

 Declaring the variables
 Public Type TypeReferenceData
 sRefx As Single ‘ Calibration data, x
 sRefy As Single ‘ Calibration data, y
 sRefLv As Single ‘ Calibration data, Lv
 End Type

 Private typCalData(4) As TypeReferenceData

 Excuting Calibration
 On Error GoTo E

 '================================
 ' Check Cal Data
 '================================
 bReturn = SetCalData() ‘ Method to set the calibration data
 If bReturn = False Then Exit Sub

（Code is omitted.）
 '================================
 ' Matrix Calibration
 '================================
 If objMemory.ChannelNO = 0 Then
 ' Cannot excute the matrix calibration for Channel 0
 MsgBox "CH00 cannot be calibrated", vbOKOnly
 Exit Sub
 End If

 objCa.DisplayMode = 0 ‘ Procedure 2 Lvxy display mode
 objMemory.ChannelNO = ListNo – 1 ‘ Procedure 3

‘ ListNo is the value of the defined number for calibration memory channel.
 objCa.SetLvxyCalMode ‘ Procedure 4

 '--------------------------------
 ' Red
 '--------------------------------
 Result = MsgBox("Red Measure", vbOKCancel) ‘ Procedure 5 Display the RED

pattern
 If Result = vbCancel Then
 objCa.ResetLvxyCalMode
 Exit Sub
 End If

 objCa.Measure ‘ Procedure 6
 objCa.SetLvxyCalData CLR_RED, typCalData(CLR_RED).sRefx, _
 typCalData(CLR_RED).sRefy, typCalData(CLR_RED).sRefLv ‘ Procedure 7

23

 '--------------------------------
 'Green
 '--------------------------------
（Code is omitted.）
 '--------------------------------
 'Blue
 '--------------------------------
（Code is omitted.）
 '--------------------------------
 'White
 '--------------------------------
（Code is omitted.）

 objCa.Enter ‘ Procedure 8

（Code is omitted.）
 '================================
 ' White Calibration
 '================================
 If objMemory.ChannelNO = 0 Then
 ' Cannot excute the white calibration for Channel 0
 MsgBox "CH00 cannot be calibrated", vbOKOnly
 Exit Sub
 End If

 objCa.DisplayMode = DSP_LXY ‘ Procedure 2
 objMemory.ChannelNO = ListNo – 11 ‘ Procedure 3
 objCa.SetLvxyCalMode ‘ Procedure 4

 '--------------------------------
 'White
 '--------------------------------
 Result = MsgBox("Measure White", vbOKCancel) ‘ Procedure 5 Display the

WHITE pattern
 If Result = vbCancel Then
 objCa.ResetLvxyCalMode
 Exit Sub
 End If
 objCa.Measure ‘ Procedure 6
 objCa.SetLvxyCalData CLR_WHITE, typCalData(CLR_WHITE).sRefx, _
 typCalData(CLR_WHITE).sRefy, typCalData(CLR_WHITE).sRefLv ‘ Procedure 7
 objCa.Enter ‘ Procedure 8

（Code is omitted.）
 '================================
 ' White Set (other than CH00)
 '================================
 If objMemory.ChannelNO = 0 Then
 ' Cannot set standard white data by measurement for Channel 0
 MsgBox "CH00 cannot be set", vbOKOnly
 Exit Sub
 End If
 objCa.DisplayMode = DSP_LXY ‘ Procedure 2
 objMemory.ChannelNO = ListNo – 1 ‘ Procedure 3
 Result = MsgBox("White Measure", vbOKCancel) ‘ Procedure 5 Display the

WHITE pattern
 If Result = vbCancel Then
 Exit Sub
 End If
 objCa.Measure ‘ Procedure 6
 objCa.Enter ‘ Procedure 8

24

 '================================
 ' White Data Set (CH00)
 '================================
 If objMemory.ChannelNO <> 0 Then
 ' Cannot set standard white data by inputting value for other than Channel 0
 MsgBox "Only For CH00", vbOKOnly
 Exit Sub
 End If
 objCa.SetLvxyCalData CLR_WHITE, typCalData(CLR_WHITE).sRefx, _
 typCalData(CLR_WHITE).sRefy, typCalData(CLR_WHITE).sRefLv ‘ Procedure 7

 Else

 （Code is omitted.）
 '================================
 ' Channel ID Set
 '================================
 ' strID is the string set for ID
 If strID = "" Then
 objMemory.SetChannelID "CH" + Str$(ListNo - 1)
 Else
 objMemory.SetChannelID strID
 End If

 （Code is omitted.）

E:
 '===================================
 ' Error Trap
 '===================================
 If bSetMode = True Then
 objCa.ResetLvxyCalMode
 End If

 Dim strERR As String
 Dim iReturn As Integer

 strERR = "Error from " + Err.Source + Chr$(10) + Chr$(13)
 strERR = strERR + Err.Description + Chr$(10) + Chr$(13)
 strERR = strERR + "HRESULT " + CStr(Err.Number - vbObjectError)
 MsgBox strERR, vbOKOnly

25

The SDK also provides the capability of copying calibration data from a file into a memory channel, and
from a memory channel into a file. This feature makes it easy to provide applications with the ability to
manage calibration data and memory channels. The following samples show how this feature can be used.

Example: Writing Data from CA-200 to File

' Specify the channel number of the channel holding the calibration data to be copied.

objCa.Memory.ChannelNO = 1

' Save the calibration data.

For Each objProbe In objCa

lProbeSNO = objProbe.SerialNO

' Generate calibration data filename (strDataFile) from memory channel, ID, and
' probe serial number. (Code is omitted.)

' Write the calibration data from the memory channel into the file.

objCa.Memory.CopyToFile objProbe.Number, strDataFile

Next objProbe

Example: Writing Data from File to CA-200

' Specify the channel number of the channel holding the calibration data to be copied.

objCa.Memory.ChannelNO = 10

'Specify the memory channel ID (by entering it manually or by extracting it from the
'calibration data name). (Code is omitted.)

 ' Load the calibration data.

For Each objProbe In objCa

lProbeSNO = objProbe.SerialNO

' Generate calibration data filename (strDataFile) from lsProbeSNO,
' calibration data name, etc. (Code is omitted.)

' Copy the calibration file's calibration data into the memory channel.

objCa.Memory.CopyFromFile objProbe.Number, strDataFile

Next objProbe

26

3.2.2 Processing that need to be done before an arbitrary calibration channel is used

Rigorous configuration management also requires management of probes and of the calibration data
used with those probes. The identity of probes can be checked using their serial numbers. The
calibration information handled by the program, meanwhile, provides not only the raw calibration data
but also attaches information indicating the calibration type (that is, whether the data is for arbitrary
calibration or for analyzer-mode operation) and the identity of the probe to which the data is associated.
Accordingly, you can see whether calibration data is being applied correctly by comparing the probe
serial number in the calibration information against the probe serial number of the actually connected
probe.

The following sample code gets the serial number of the connected probe from the SerialNO property
of the Probe object, and then uses the Memory object's GetMemoryStatus method to get the
calibration information (calibration type and probe serial number).

Example: Checking Consistency of Probe Configuration and Calibration Data

'Declare the SDK object variables.

Public objCa200 As Ca200 'Application object
Public objCa As Ca 'CA-200 object
Public objProbe As Probe 'Probe object
Public objMemory As Memory 'Memory object

' Create the application object.

Set objCa200 = New Ca200

'Set the configuration.

objCa200.SetConfiguration 1, "1234", 1 ,38400 ‘ COM1
objCa200.SetConfiguration 2, "1234", 2 ,38400 ‘ COM2
objCa200.SetConfiguration 3, "1234", 3 ,38400 ‘ COM3

'Check the probes.

For Each objCa In objCa200.Cas 'Call each CA-200, in order.

'Create memory object for the called CA-200.

Set objMemory = objCa.Memory

For Each objProbe In objCa.Probes 'Call each probe, in order.

'Get ID No. and serial No. of the called probe.

lNumber = objProbe.Number
lProbeSNO = objProbe.SerialNO

' Check probe configuration (confirm that specified probe is connected to
' the correct port of the specified CA). (Code is omitted.)

' For called probe, call each of the utilized memory channels, in order.

For ch = 10 To 19

 'Set the memory channel.

objMemory.ChannelNO = ch

'Get the channel's calibration information.
'Gotten lCProbeSNO and lRProbeSNO show for which serial number of probe
' the calibration data and the target color data are.

objMemory.GetMemoryStatus lNumber,lCProbeSNO,lRProbeSNO, _
lCalMode

27

'Check consistency with calibration data. (Code is omitted.)
'(Confirm that probe serial number attached to calibration data
' matches the serial number of the connected probe, etc.)

Next ch

Next objProbe
Next objCa

To check whether the calibration data in the CA-200's memory channel is correct, you can use the
Memory object's CheckCalData method, as shown in the sample code below.

Example: Routine to Check Appropriateness of the Calibration Data in the CA-200

'Check the calibration data.

For Each objCa In objCa200.Cas 'Call each CA-200, in order.

'Create memory object for the called CA-200.

Set objMemory = objCa.Memory

For Each objProbe In objCa.Probes 'Call each probe, in order.

'Get ID No. and serial No. of the called probe.

lNumber = objProbe.Number
lProbeSNO = objProbe.SerialNO

' Call memory channels, in order.

For ch = 1 To 99

 'Set the memory channel.

objMemory.ChannelNO = ch

‘Get the memory channel's ID.

strMemoryID = objMemory.ChannelID

' Determine corresponding calibration data fie (filename: strdataFile) based
' on probe serial number, memory channel ID. (Code is omitted.)

' Check that the calibration data matches the memory-channel data.

lr = Memory. CheckCalData(lNumber, strDataFile)

Next ch
Next objProbe

Next objCa 'Call remaining calibration data to be checked, in order.

28

3.2.3 Zero-Calibration Event Processing

If the probe temperature changes by a certain amount following zero-calibration, the probe must be
zero-calibrated once again. In the event that such re-zeroing is required, the device will return a
zero-calibration warning code within the status information of the measurement results. This section briefly
explains how applications can handle these codes.

If the SDK detects the zero-calibration warning code within the measurement results, it generates a
zero-calibration request event. By setting up a Object which receives the event in the application, you
can include code to handle the event and automatically execute zero calibration.

From Object of VB can handle the event. Below is a brief overview Form Object creation and event
process coding.

③ First, declare a Ca object variable. Declare it in Form Module, using the WithEvents keyword in
the declaration.

Example: Declaration of Ca Object Variable

' Declare Ca Object variable.

Dim WithEvents objCa as Ca

Now that it has been ready for defining the Procedure at the time of receiving the event in From
Module, selecting SyncObject in the Object box will enable you select the zero-calibration event
procedure (ExeCalZero) in the Procedure box. You can now program this procedure to
zero-calibrate the relevant CA-200, or to display a message on the CA-200, or to take other relevant
action.

Example: Handling of the zero-calibration event

Private Sub objCaSync_ExeCalZero()
MsgBox "Cal Zero"
objCa.CalZero

End Sub

Next, of course, you will also need to link the SyncObject to the Ca object which is the other party of
the communication. The following example shows how to link the SyncObject to the SDK's Ca object
within the main routine such as formatting Form Object.

Example: Setting a SycnObject

Set objCaSync = objCa

 In the above code, objCa is the SDK's Ca object for the targeted CA-200 unit.

29

3.2.4 Obtaining the hardware information of the connected probes

By using IProbeInfo Object you can maintain the information of the connected hardware (the model No.,
the model name) and obtain the model No. and the model name from a Property in this object. Declaration
of the SDK object variables and assignment of the object variables (generation) will be as follows.

’ Declaring the SDK object variables
Public objProbeInfo as IProbeInfo

Public sProbeTypeName as String

’ Assigning the object variables (generation)
Set objProbeInfo = objProbe

’ Obtaining the model No. and the model name of the connected probes
sProbeTypeName = objProbeInfo.TypeName

lProbeTypeNo = objProbeInfo.TypeNO

3.2.5 Errors: Likely Causes and Appropriate Responses

This section explains issues related to error processing by applications using this SDK.

The SDK can return four types of error, as follows.

① Communication error: Error in USB or RS communication between the CA-200 and the host PC

② CA-200 execution error: CA-200 command error

③ SDK execution error: Error caused by operation of SDK method or property

④ COM Error: Error caused by SDK internal object operation

Errors of type ① will generally have one of two causes, as follows.

①-1．Communication-related parameter was improperly set when the configuration was being set up.
①-2．Hardware error (cable connection problem) occurred while the application was running

An error of type ①-2 may cause subsequent problems if you continue operation. If this type of error
occurs, the best response is to carry out minimal post-processing and then restart the system.

Note also that while each CA-200 unit provides both a USB port and an RS port, you should never
configure them separately and then connect them up at the same time. (The SDK will not check for this,
and correct operation cannot be guaranteed.)

Errors of type ④ are execution errors related to the system's COM infrastructure. Errors of this type
are not anticipated so long as you are operating on a local server.

Errors of type ② and ③ indicate that execution itself was carried out normally but that the result was
abnormal. These errors can be generated by a number of causes, including the following:

(1) Incorrect parameter setting in method or property
(2) Mismatch between method or property and execution environment
(3) Problem with CA-200 operation or measurement environment

Errors of type (1) are produced during application development. For these errors you should refer to the
error object (see below) and then take appropriate steps to resolve the problem.

Most errors of type (2) are also produced during application development. These errors occur because
some methods and properties cannot be used with certain object states. Refer to the error information
and take appropriate steps to resolve the problem.

Some errors of type (2), as well as all errors of type (3), are runtime errors. These errors do not have a
significantly adverse impact on SDK operation, and the application can continue running provided that
it first clears the error. To clear the error, the application must utilize the error object and implement
appropriate error processing.

When an error occurs, the SDK will generate an error object in accordance with the COM error-object
protocol. The error object returns the following information:

30

① Error type (one of the error types indicated above)
② Content of error
③ Hints about how to resolve the error

The sample code shown below implements normal VB error trapping and error processing. The error
object returned by the SDK can be referenced using the VB Err object, allowing the error to be trapped.
Specifically, ID information about the object that returned the error object can be referenced using
Err.Source; the error information (type, content, and hints) can be referenced using
Err.Description; and the error type number can be referenced using Err.Number.

 Example: Error Processing

 On Error GoTo Er

 Set objCa200 = New Ca200
 objCa200.AutoConnect
 Set objCa = objCa200.SingleCa
 Set objProbe = objCa.SingleProbe
 Set objMemory = objCa.Memory

 MsgBox "0-Cal", vbOKOnly
 objCa.CalZero
 …
Er:
 Dim strERR As String
 Dim iReturn As Integer

 strERR = "Error from " + Err.Source + Chr$(10) + Chr$(13)
 strERR = strERR + Err.Description + Chr$(10) + Chr$(13)
 strERR = strERR + "HRESULT " + CStr(Err.Number - vbObjectError)
 iReturn = MsgBox(strERR, vbRetryCancel)
 Select Case iReturn
 Case vbRetry: Resume
 Case Else:
 objCa.RemoteMode = 0
 End
End Select

31

4. SDK Reference

PAGE
Add Adds a probe to the specified collection of output probes. OutputProbes Collection Method 104
AddAll Adds all connected probes to the collection of output probes. OutputProbes Collection Method 105
AutoConnect Automatically configures a simple CA-200 setup consisting of a

single CA-200 unit with a single probe.
Ca200 Object Method 39

AveragingMode Sets or gets the CA-200 unit's averaging mode (FAST, SLOW, or
AUTO).

Ca Object Property 58

B These properties get the analyzer-mode measurement results. Probe Object Property 121
BrightnessUnit Sets or gets the CA-200 unit's brightness display unit. Ca Object Property 59
CalStandard Sets or Gets the CA-200 unit's default calibration mode.(CH00) Ca Object Property 66
CalZero Executes zero-calibration of the CA-200 unit. Ca Object Method 67
Cas Gets collection of connected CA-200 units. Ca200 Object Collection 35
CAType Gets the CA-200 unit's product type. Ca Object Property 60
CAVersion Gets the CA-200 unit's firmware version information. Ca Object Property 61
ChannelID Selects the CA-200 unit's memory channel, or gets the current

selection. Selection is expressed by channel ID name.
Memory Object Property 86

ChannelNO Specifies the CA-200 unit's memory channel, or gets the current
selection. Selection is expressed by channel number.

Memory Object Property 85

CheckCalData Compares the calibration data in the currently selected memory
channel against calibration data held in the specified calibration
data file.

Memory Object Method 90

Clone Gets a copy of the collection of output probes. OutputProbes Collection Method 107
CopyFromFile Copies the calibration data from the specified file into the

currently selected memory channel.
Memory Object Method 92

CopyToFile Copies the calibration data from the currently selected memory
channel into a file.

Memory Object Method 91

Count Gets the count of the connected CA-200 units. Cas Collection Property 43
Count Gets the count of the connected probes. Probes Collection Property 96
Count Gets the count of the output probes. OutputProbes Collection Property 102
DisplayDigits Sets or gets the number of digits displayed on the CA-200 unit

(the CA-200 unit's display-digits setting).
Ca Object Property 57

DisplayMode Sets or gets the CA-200 unit's display mode (measuring mode). Ca Object Property 56
DisplayProbe Specifies or gets the display probe of the CA-200 unit. Ca Object Property 53
duv Use these properties to get the correlated color temperature and

the difference from black-body locus, as represented in uv color
space.

Probe Object Property 116

Enter Writes calibration data (arbitrary calibration data, matrix
calibration data, or display-characteristics data) into memory.

Ca Object Method 78

ExeCalZero Notifies the client that the CA-200 unit requires zero-calibration. Ca Object Method 82

FlckrFMA Gets the FMA flicker measurement.(Only the applicable model) Probe Object Property 118
FlckrJEITA Gets the JEITA flickermeasurement.(Only the applicable model) Probe Object Property 117
G These properties get the analyzer-mode measurement results. Probe Object Property 121
GetAnalogRange Gets the range of the CA-200 unit's analog display. Ca Object Method 70
GetFMAAnalogRange Gets the analog display range used by the CA-210 for flicker

measurement.(Only the applicable model)
Ca Object Method 72

GetMemoryStatus Gets calibration information from the currently selected memory
channel.

Memory Object Method 89

GetReferenceColor Gets the reference (white) color setting for the selected memory
channel.

Memory Object Method 87

GetSpectrum Gets the amplitude of each frequency in the JEITA flicker
measuring data.

Probe Object Property 122

ID Sets or gets the ID name of the CA-200 unit. Ca Object Property 64
ID Sets or gets the ID name for the targeted probe. Probe Object Property 120
Item Gets the specified CA-200 unit from the collection of connected

CA-200 units.
Cas Collection Property 42

Item Gets the specified probe from the collection of probes connected
to the CA-200 unit.

Probes Collection Property 95

Item Gets the specified probe from the collection of output probes. OutputProbes Collection Property 101
ItemOfNumber From the collection of connected CA-200 units, gets the CA-200

unit identified by the specified ID number.
Cas Collection Property 44

ItemOfNumber From the collection of connected probes, gets the probe
identified by the specified ID number.

Probes Collection Property 97

ItemOfNumber From the collection of output probes, gets the probe identified by
the specified ID number.

OutputProbes Collection Property 103

LsUser These properties get the results in u'v' or L*u*v* color space. Probe Object Property 115
Lv These properties get the brightness measurement results in

cd/m2 (Lv) or fL (LvfL) units.
Probe Object Property 114

LvfL These properties get the brightness measurement results in
cd/m2 (Lv) or fL (LvfL) units.

Probe Object Property 114

32

PAGE
Measure Executes measurement. Ca Object Method 68
Memory Gets the memory channel space of the corresponding CA-200

unit.
Ca Object Property 52

Number Gets the CA-200 unit's ID number. Ca Object Property 62
Number Gets the probe's ID number. Probe Object Property 119
OutputProbes Gets the collection of output probes. Ca Object Property 51
PortID Gets the ID of the CA-200 unit's communication port. Ca Object Property 63
Probes Gets the collection of the probes connected to the specified CA-

200 unit.
Ca Object Property 50

R These properties get the analyzer-mode measurement results. Probe Object Property 121
RAD Use these properties to get the measurement-results status

code for the corresponding measurement (color measurement,
JEITA flicker measurement, FMA flicker measurement, and
analyzer-mode, respectively).

Probe Object Property 108

RD Use these properties to get the measurement-results status
code for the corresponding measurement (color measurement,
JEITA flicker measurement, FMA flicker measurement, and
analyzer-mode, respectively).

Probe Object Property 108

ReceiveMsr Receives measurement results from all connected CA-200 units. Cas Collection Method 46

RemoteMode Sets the CA-200 unit's remote mode.(ON/OFF) Ca Object Property 65
RemoveAll Deletes all designature of output probes. OutputProbes Collection Method 106
ResetAnalyzerCalMode Takes the CA-200 unit out of display-characteristics input mode,

and returns it to normal mode.
Ca Object Method 76

ResetLvxyCalMode Takes the CA-200 unit out of arbitrary calibration mode and
returns it to normal mode.

Ca Object Method 80

RFMA Use these properties to get the measurement-results status
code for the corresponding measurement (color measurement,
JEITA flicker measurement, FMA flicker measurement, and
analyzer-mode, respectively).

Probe Object Property 108

RJEITA Use these properties to get the measurement-results status
code for the corresponding measurement (color measurement,
JEITA flicker measurement, FMA flicker measurement, and
analyzer-mode, respectively).

Probe Object Property 108

SendMsr Sends the Measure command to all connected CA-200 units. Cas Collection Method 45
SerialNO Gets the probe's serial number. Probe Object Property 119
SetAnalogRange Sets the range of the CA-200 unit's analog display. Ca Object Method 69
SetAnalyzerCalData Executes input of display-characteristics data (standard values). Ca Object Method 77

SetAnalyzerCalMode Sets the CA-200 unit into display-characteristics input mode. Ca Object Method 75
SetCaID Sets an ID name (alias) for a specified Ca object. Cas Collection Method 47
SetChannelID Sets an ID name for the currently selected memory channel. Memory Object Method 88
SetConfiguration Sets up the CA-200 configuration. Ca200 Object Method 37
SetDisplayProbe Designates the probe that will be used as the CA-200's display

probe.
Ca Object Method 74

SetFMAAnalogRange Sets the analog display range used by the CA-210 for flicker
measurement.(Only the applicable model)

Ca Object Method 71

SetLvxyCalData Executes input of arbitrary calibration data (measured values and
calibration values).

Ca Object Method 81

SetLvxyCalMode Sets the CA-200 unit into arbitrary calibration mode. Ca Object Method 79
SetProbeID Sets an ID name (alias) for a specified Probe object. Probes Collection Method 98
SetPWRONStatus Sets the CA-200 into PWRON state. Ca Object Method 73
SingleCa Gets the CA-200 unit that has been connected by the

AutoConnect method.
Ca200 Object Property 37

SingleProbe Gets the probe configured by the Ca200 object's AutoConnect
method.

Ca Object Property 54

sx These properties get the measurement results in xy color space. Probe Object Property 113

sy These properties get the measurement results in xy color space. Probe Object Property 113

SyncMode Sets or gets the CA-200 unit's sync mode. Ca Object Property 55
T Use these properties to get the correlated color temperature and

the difference from black-body locus, as represented in uv color
space.

Probe Object Property 116

TypeName Obtains a character string that indicates the type of the
connected probes.

IProbeInfo Object Property 125

TypeNO Obtains a value that indicates the type of the connected probe. IProbeInfo Object Property 126
ud These properties get the results in u'v' or L*u*v* color space. Probe Object Property 115
usUser These properties get the results in u'v' or L*u*v* color space. Probe Object Property 115
vd These properties get the results in u'v' or L*u*v* color space. Probe Object Property 115
vsUser These properties get the results in u'v' or L*u*v* color space. Probe Object Property 115
X These properties get the measurement results in XYZ color

space.
Probe Object Property 112

Y These properties get the measurement results in XYZ color
space.

Probe Object Property 112

Z These properties get the measurement results in XYZ color
space.

Probe Object Property 112

33

4.1 Ca200 Object

The Ca200SK object is the root object (application object) of the object hierarchy provided by this SDK.

Explanation:

The Ca200 object is the root object provided by the SDK. This object provides the capability to
connect up, configure, and manage up to five CA200 units (below, "CA-200s" or "CA-200 units").

Applications developed with this SDK begin by instantiating this Ca200 object. The application can
then use the Ca200.SetConfiguration method (with the relevant arguments) to configure the
CA-200s to be used for measurement. The SDK automatically generates the relevant lower-level
objects in accordance with these configuration arguments. The application then uses the lower-level
objects to control each of the connected CA-200s.

34

Ca200 Object: Properties, Methods, and Collections

Properties/ Collections:

Cas

SingleCa

Methods:

SetConfiguration

AutoConnect

Events:

None

35

Ca200 Object
Property

Ca200::Cas Collection

Gets collection of connected CA-200 units.

Syntax:

dim objCas as Cas

Set objCas = objCa200.Cas

objCas: Collection of connected CA-200 units (Cas)
ObjCa200: Targeted root object provided by the SDK (Ca200)

Explanation:

Use the Cas property of the Ca200 object to get the collection of connected CA-200 devices. The Cas
property is the collection of Ca objects representing the currently connected CA-200 units. You can use
the Cas collection's methods and properties to get the Ca object of any of the CA-200 devices in the
collection.

36

Ca200 Object
Property

Ca200::SingleCa

Gets the CA-200 unit that has been connected by the Ca200 object's AutoConnect method.

Syntax:

Dim objCa as Cas

Set objCa = objCa200.SingleCa

objCa: CA-200 unit obtained from the SingleCa property (Ca)
ObjCa200: Targeted root object provided by the SDK (Ca200)

Explanation:

If you are using a single USB-connected CA-200 unit with a single probe, you can use the
AutoConnect method to set up the configuration. (The AutoConnect method provides easier setup
than the SetConfiguration method.) The SingleCa property is the Ca object that is created by
the AutoConnect method. You use the methods and properties of this object to control the connected
CA-200.

37

Ca200 Object
Method

Ca200::SetConfiguration

Sets up the CA-200 configuration.

Syntax:

objCa200.SetConfiguration lNumber, strConnectstring, lPort, lBaudrate

ObjCa200: Targeted root object provided by the SDK (Ca200)
lNumber: ID number of the CA-200 to be set up (Input: Long)
strConnectstring: Character string indicating probes to be connected (Input:
String)
lPort: Type of communication port used for the connection (Input: Long)
lBaudrate: Baud rate for RS communication (Input: Long)

Explanation:

You use the SetConfiguration method to set up the CA-200 configuration.

You must execute this method once for each CA-200 that you want to set up. For arguments, you
supply an ID number for the CA-200 to be connected, a character string indicating how probes are to be
connected to the CA-200, and a number indicating the type of communications port the CA-200 will be
connected to. You must also specify the baud rate at which communication is to be carried out.

When connecting multiple CA units via USB:

0 to 4: USB

It is not possible to mix USB connections with RS COM port connections. Also, the numbers must be
in sequence starting with 0.

When using the COM port to connect multiple CA units, the numbers indicating port type are as
follows:

 lPort=0: USB

lPort=1 to 255: COM1 to COM255

And only 1 unit can be connected via USB (Same specification as previous version 3.12 or before of
CA-SDK).

The method checks that the actual hardware is consistent with the supplied arguments, and if there is no
inconsistency it automatically generates the corresponding Cas collection, Ca object, Probes
collection, OutputProbes collection, and Probe objects. If a contradiction is encountered, the
method terminates in error.

The ID number value (lNumber), which must be an integer value from 1 to 5, becomes the
Ca.Number property of the generated Ca object. The method also automatically generates a
corresponding ID name (alias), which is set into the Ca.ID property. (The automatically generated
name is "Cax", where x corresponds to the ID number. For example, if the ID number is 1, then the
automatically generated name is "Ca1".) This Ca.ID property can thereafter be used to target specific
Ca objects within the Cas collection of Ca objects.

The strConnectstring argument gives the probe numbers of the probes to be connected. Probe
numbers run from 1 to 5, and the argument is written as a concatenated string. A value of "12345", for
example, would connect up all five probes. For each probe, the method generates a corresponding
Probe object, and sets the probe number into that object's Probe.Number property. Again, the
method also automatically generates a corresponding probe ID name (alias), which is set into the
Probe.ID property. (The automatically generated name is "Px", where x corresponds to the probe
number.) The Probe.ID property can thereafter be used to target specific Probe objects within the
Probes collection.

38

Ca200 Object
Method

Once the SetConfiguration method has terminated normally, the application can use the methods
and properties of the generated objects to control and manage the connected CA-200 and probes.

Even if using a USB port connection, you must specify a baud rate.

 lBaudrate=300, 600, 1200, 2400, 4800, 9600, 19200, 38400

Note:

When performing the SetConfiguration method, the CA-SDK determines whether multiple-unit
connection is being performed via USB ports or via RS COM ports in the following way:

• If the port number is not 0 and the port number used in the first SetConfiguration
method is 4 or less, connection via USB is attempted first. If USB connection succeeds,
then operation is performed as if multiple units are connected via USB. If connection fails,
connection via RS COM is attempted. If connection succeeds, operation is performed as if
multiple units are connected via RS COM ports (for port numbers other than 0).

• If the port number is not 0 and the port number used in the first SetConfiguration
method is 5 or greater, connection via RS COM is attempted. If connection succeeds,
operation is performed as if multiple units are connected via RS COM ports (for port
numbers other than 0).

39

Ca200 Object
Method

Ca200::AutoConnect

Automatically configures a simple CA-200 setup consisting of a single CA-200 unit with a single
probe.

Syntax:

objCa200.AutoConnect

ObjCa200: Targeted root object provided by the SDK (Ca200)

Explanation:

The AutoConnect method automatically sets the configuration for a single USB-connected CA-200
unit connected to a single probe. The method checks the hardware of the connected CA-200, and if the
configuration is normal it proceeds to create the objCa object and Probe object for the connected
CA-200 and probe. If the method is unable to set up the configuration, it terminates in error.

To get the Ca object and Probe object generated by this method, the application uses the Ca200
object's SingleCa and SingleProbe properties, respectively.

Once AutoConnect has terminated normally, the application can use the methods and properties of
the generated objects to control and manage the connected CA-200 and probe.

40

4.2 Cas Collection

Collection of connected CA-200 units.

Explanation:

When you connect a CA-200 unit using the Ca200.SetConfiguration method, the corresponding
Ca object is added as a member to the Cas collection. You use the Cas collection's methods and
properties to get the Ca object of any of the connected CA-200 devices.

41

Cas Collection: Properties, Methods, and Collections

Properties/Collections:

Item

Count

ItemOfNumber

Methods:

SendMsr

ReceiveMsr

SetCaID

Events:

None

42

CAS Collection
Property

Cas::Item

Gets the specified CA-200 unit from the collection of connected CA-200 units.

Syntax:

Dim objCa as Ca

Set objCa = objCas.Item(vIndexOrID)

objCa: Retrieved CA-200 unit (Ca)
ObjCas: Targeted collection of connected CA-200 units (Cas)
vIndexOrID: Index value or ID name of the retrieved CA-200 unit (Input: Variant)

Explanation:

Use this property to access individual connected CA-200 units. Identify the CA-200 unit either by its
index value (1 to 5) or its ID name (“CA1” to “CA5”, or specified ID name).

43

CAS Collection
Property

Cas::Count
Gets the count of the connected CA-200 units.

Syntax:

lCount = objCas.Count

lCount: Number of connected CA-200 units (Long)
ObjCas: Targeted collection of connected CA-200 units (Cas)

Explanation:

This property gets the count of the connected CA-200 units.

44

CAS Collection
Property

Cas:: ItemOfNumber
From the collection of connected CA-200 units, gets the CA-200 unit identified by the specified ID
number.

Syntax:

Dim objCa as Cas

Set objCa = objCas.ItemOfNumber(lNumber)

objCa: Retrieved CA-200 unit (Output: Ca)
ObjCas: Targeted collection of connected CA-200 units (Cas)
lNumber: ID number identifying a CA-200 unit (Input: Long)

Explanation:

Gets the Ca object corresponding to the ID number given by the lNumber argument. Valid range is 1
to 5.

45

CAS Collection
Method

Cas:: SendMsr
Sends the Measure command to all connected CA-200 units.

Syntax:

objCas.SendMsr

ObjCas: Targeted collection of connected CA-200 units (Cas)

Explanation:

There are two ways to take and return measurements. One way is to use the Ca object's Measure
method. This will send the Measure command to the corresponding CA-200 unit, and then receive the
results.

The other way is to use the Cas collection's SendMsr and ReceiveMsr methods. The SendMsr
method sends the Measure command to all of the connected CA-200 units, and the ReceiveMsr
method can then be used to receive all of the results. In the case of meny CA-200 units connected, this
approach provides better response time than the Ca object's Measure method.

Note:

Use this method only when the Measure method causes any problem. Try the Measure method, if
even this SendMsr method cannot provide the response time.

After completing SendMsr method correctly, then it is neccessaly to excute ReceiveMsr method.
SendMsr method performs under this way because it is specified for providing response time. If it isn’t
used under this way, some problem on communication with the CA-200 may occur.

46

CAS Collection
Method

Cas:: ReceiveMsr
Receives measurement results from all connected CA-200 units.

Syntax:

objCas.ReceiveMsr

ObjCas: Targeted collection of connected CA-200 units (Cas)

Explanation:

After using the Cas collection's SendMsr method to command the CA-200 units to take measurement,
you can use the ReceiveMsr command to receive the measurement results.

While it is is possible to use the Ca object's Measure method to take measurement and receive results,
the use of the SendMsr and ReceiveMsr pair provides faster response.

47

CAS Collection
Method

Cas:: SetCaID
Sets an ID name (alias) for a specified Ca object.

Syntax:

objCas.SetCaID lNumber, strID

objCas: Cas object containing the Ca object whose ID is being set
lNumber: ID number identifying a CA-200 unit (Input: Long)
strID: ID name for Ca object (Input: String)

Explanation:

This method sets an arbitrary ID name that can be used to refer to the specified Ca object. While it is
always possible to refer to the Ca object by its ID number (1 to 5) or by its index value within the Cas
collection, users may find it more convenient to refer to it by a user-assigned name.

48

4.3 CＡ Object

The Ca object represents a connected CA-200 unit.

Explanation:

Each Ca object represents a physically connected CA-200 unit. You control the CA-200 unit using the
properties and methods of its Ca object. The Ca object supports almost all of the control capabilities
supported by the CA-200 unit itself.

49

Ca Object: Properties, Methods, and Collections

Properties/Collections:

Probes

OutputProbes

Memory

DisplayProbe

SingleProbe

SyncMode

DisplayMode

DisplayDigits

AveragingMode

BrightnessUnit

CaType

CaVersion

Number

PortID

ID

RemoteMode

CalStandard

Methods:

CalZero

Measure

SetAnalogRange

GetAnalogRange

SetFMAAnalogRange

GetFMAAnalogRange

SetPWRONStatus

SetDisplayProbe

SetAnalyzerCalMode

ResetAnalyzerCalMode

SetAnalyzerCalData

Enter

SetLvxyCalMode

ResetLvxyCalMode

SetLvxyCalData

Events:

ExeCalZero

50

CＡ Object
Property

Ca ::Probes
Gets the collection of the probes connected to the specified CA-200 unit.

Syntax:

Dim objProbes as Probes

Set objProbes = objCa.Probes

objProbes: Retrieved collection of connected probes (Probes)
objCa: Targeted CA-200 unit (Ca)

Explanation:

When the Ca200 object's SetConfiguration method is used to set up the CA-200 configuration,
the method automatically instantiates a Probe object for each of the connected probes. It also adds
these Probe objects to the Probes collection. You use the methods and properties of the Probes
collection to get the Probe object for the probe you wish to work on.

51

CＡ Object
Property

Ca ::OutputProbes
Gets the collection of output probes.

Syntax:

Dim objOutputProbes as OutputProbes

Set objOutputProbes = objCa.OutputProbes

objOutputProbes: Retrieved collection of output probes (OutputProbes)
objCa: Targeted CA-200 unit (Ca)

Explanation:

The OutputProbes collection is the collection of Probe objects corresponding to the connected
probes that have been designated as output probes.

You use the methods of the OutputProbes collection to designate specified connected probes as
output probes, or to remove such designation. (When you designated a probe as an output probe, it is
added as member to the OutputProbes collection.) You use the properties of the OutputProbes
collection to get specific output probes.

52

CＡ Object
Property

Ca ::Memory
Gets the memory channel space of the corresponding CA-200 unit.

Syntax:

Dim objMemory as Memory

Set objMemory = objCa.Memory

objMemory: Retrieved memory channels (Memory)
objCa: Targeted CA-200 unit (Ca)

Explanation:

The Ca object's Memory property gets the Memory object for the corresponding CA-200 unit. You use
the Memory object's methods and properties to manipulate the memory channels of the CA-200 unit.

53

CＡ Object
Property

Ca ::DisplayProbe
Specifies or gets the display probe of the CA-200 unit.

Syntax:

①Setting
objCa.DisplayProbe = strID

objCa: Targeted CA-200 unit (Ca)
strID: Probe ID of the probe being set as the display probe (String)

②Obtainment
strID = objCA.DisplayProbe

objCa: Targeted CA-200 unit (Ca)
strID: Probe ID of the display probe (String)

Explanation:

Use the Ca object's DisplayProbe property to designate one of the CA-200's probes as the display
probe, or to get the probe currently designated as the display probe.

54

CＡ Object
Property

Ca::SingleProbe
Gets the probe configured by the Ca200 object's AutoConnect method.

Syntax:

Dim objProbe as Probe

Set objProbe = objCa.SingleProbe

objProbe: Obtained probe (Probe)
objCa: Targeted CA-200 unit (Ca)

Explanation:

If you are using a single USB-connected CA-200 unit with a single probe, you can use the
AutoConnect method to set up the configuration. (The AutoConnect method provides easier setup
than the SetConfiguration method.) The SingleProbe property is the Probe object that is
created by the AutoConnect method. You use the methods and properties of this object to get the
measurement results from the connected CA-200.

55

CＡ Object
Property

Ca ::SyncMode
Sets or gets the CA-200 unit's sync mode.

Syntax:

①Setting
objCa.SyncMode = fSyncMode

objCa: Targeted CA-200 unit (Ca)
fSyncMode: Sync mode setting (Single)

②Obtainment
fSyncMode = objCa.SyncMode

fSyncMode: Sync mode setting (Single)
objCa: Targeted CA-200 unit (Ca)

Explanation:

Use this property to get or set the sync mode of the corresponding CA-200 unit. Note that the
fSyncMode argument is type single. Argument values are as follows.

fSyncMode = 0. : NTSC
fSyncMode = 1. : PAL
fSyncMode = 2. : EXT
fSyncMode = 3. : UNIV
fSyncMode = 40. to 200. : INT

56

CＡ Object
Property

Ca ::DisplayMode
Sets or gets the CA-200 unit's display mode.

Syntax:

①Setting
objCa.DisplayMode = lDisplayMode

objCa: Targeted CA-200 unit (Ca)
lDisplayMode: Display mode setting (Long)

②Obtainment
lDisplayMode = objCa.DisplayMode

lDisplayMode: Display mode setting (Long)
objCa: Targeted CA-200 unit (Ca)

Explanation:

Use this property to get or set the display mode of the corresponding CA-200 unit. Argument values are
as follows.

lDisplayMode = 0 : Lvxy
lDisplayMode = 1 : Tdudv
lDisplayMode = 2 : Analyzer mode (no display)
lDisplayMode = 3 : Analyzer mode (G standard)
lDisplayMode = 4 : Analyzer mode (R standard)
lDisplayMode = 5 : u'v'
lDisplayMode = 6 : FMA flicker*1
lDisplayMode = 7 : XYZ
lDisplayMode = 8 : JEITA flicker*2 (No display on CA-200 unit)

*1. Contrast flicker method
*2. JEITA flicker method

57

CＡ Object
Property

Ca ::DisplayDigits
Sets or gets the number of digits displayed on the CA-200 unit (the CA-200 unit's display-digits
setting).

Syntax:

①Setting
objCa.DisplayDigits = lDisplayDigits

objCa: Targeted CA-200 unit (Ca)
lDisplayDigits: Display-digits setting (Long)

②Obtainment
lDisplayDigits = objCa.DisplayDigits

lDisplayDigits: Display-digits setting (Long)
objCa: Targeted CA-200 unit (Ca)

Explanation:

Use this property to get or set the display-digits setting of the corresponding CA-200 unit. Argument
values are as follows.

lDisplayDigits = 0 : 3-digit display
lDisplayDigits = 1 : 4-digit display

58

CＡ Object
Property

Ca ::AveragingMode
Sets or gets the CA-200 unit's averaging mode (FAST, SLOW, or AUTO).

Syntax:

①Setting
objCa.AveragingMode = lAveragingMode

objCa: Targeted CA-200 unit (Ca)
lAveragingMode: Averaging-mode setting [FAST, SLOW, or AUTO] (Long)

②Obtainment
lAveragingMode = objCa.AveragingMode

lAveragingMode: Averaging-mode setting [FAST, SLOW, or AUTO] (Long)
objCa: Targeted CA-200 unit (Ca)

Explanation:

Use this property to get or set the averaging mode of the corresponding CA-200 unit. Argument values
are as follows.

lAveragingMode = 0 : SLOW
lAveragingMode = 1 : FAST
lAveragingMode = 2 : AUTO

59

CＡ Object
Property

Ca ::BrightnessUnit
Sets or gets the CA-200 unit's brightness display unit.

Syntax:

①Setting
objCa.BrightnessUnit = lBrightnessUnit

objCa: Targeted CA-200 unit (Ca)
lBrightnessUnit: Brightness unit setting (Long)

②Obtainment
lBrightnessUnit = objCa.BrightnessUnit

lBrightnessUnit: Brightness unit setting (Long)
objCa: Targeted CA-200 unit (Ca)

Explanation:

Use this property to get or set the CA-200 unit's brightness display unit. Argument values are as
follows.

lBrightnessUnit = 0 : fL
lBrightnessUnit = 1 : cd/m2

60

CＡ Object
Property

Ca ::CAType
Gets the CA-200 unit's product type.

Syntax:

strCAaType = objCa.CAType

objCa: Targeted CA-200 unit (Ca)
strCAType: Product type information from targeted CA-200 unit (String)

Explanation:

This property gets the CA-200 unit's product type information.

<Character string of the type>
strCAType =“CA-100Plus” The CA-200 unit's product type is CA-100Plus.
strCAType =“CA-210” The CA-200 unit's product type is CA-210.

61

CＡ Object
Property

Ca ::CAVersion
Gets the CA-200 unit's firmware version information.

Syntax:

strCAVersion = objCa.CAVersion

objCa: Targeted CA-200 unit (Ca)
strCAVersion: CA-200 unit's firmware version information (String)

Explanation:

 This property gets the CA-200 unit's firmware version information.

<Example of character string>
 “Ver.2.00.0000”

62

CＡ Object
Property

Ca ::Number
Gets the CA-200 unit's ID number.

Syntax:

lNumber = objCa.Number

objCa: Targeted CA-200 unit (Ca)
lNumber: CA-200 unit's ID No. (Long)

Explanation:

This property gets the CA-200 unit's ID number (1 to 5).

63

CＡ Object
Property

Ca ::PortID
Gets the ID of the CA-200 unit's communication port.

Syntax:

strPortID = objCa.PortID

strPortID: CA-200 unit's comm port ID (String)
objCa: Targeted CA-200 unit (Ca)

Explanation:

This property gets the ID of the CA-200 unit's communication port. Argument values are as follows.

strPortID = “USB” : USB
strPortID = “COM1”.. “COM255” : COM1-COM255

64

CＡ Object
Property

Ca :: ID
Sets or gets the ID name of the CA-200 unit.

Syntax:

①Setting
objCa.ID = strID

objCa: Targeted CA-200 unit (Ca)
strID: ID name of the CA-200 unit (String)

②Obtainment
strID = objCa.ID

strID: ID name of the CA-200 unit (String)
objCa: Targeted CA-200 unit (Ca)

Explanation:

The client can use this property to set an ID name (alias) for the CA-200, or to get the current ID name
setting from the CA-200. The ID name can be used to target a specific Ca object from the Cas
collection.

The default settings are “CA1”, “CA2”, … for 1, 2, … of the CA ID number specified by
SetConfiguration Method of Ca200 Object.

65

CＡ Object
Property

Ca :: RemoteMode
Sets the CA-200 unit's remote mode.

Syntax:

objCa.RemoteMode = lRemoteMode

objCa: Targeted CA-200 unit (Ca)
lRemoteMode: Remote mode setting for the CA-200 unit (Long)

Explanation:

Use this property to set the CA-200's remote mode to ON, OFF, or LOCKED. If you set the mode to
LOCKED, the CA-200 unit will no longer accept input from it's own operating panel. To release the
lock, you must reset the remote mode to OFF.

To execute the SetConfiguration or AutoConnect Method of Ca200 Object sets the mode to
LOCKED automaticaly.

Argument values are as follows.

lRemoteMode = 0 : OFF
lRemoteMode = 1 : ON
lRemoteMode = 2 : LOCKED

66

CＡ Object
Property

Ca :: CalStandard
Sets or Gets the CA-200 unit's default calibration mode.

Syntax:

①Setting
objCa.CalStandard = lCalStandard

lCalStandard: Default calibration mode of the targeted CA-200 unit. (Long)
objCa: Targeted CA-200 unit (Ca)

②Obtainment
lCalStandard = objCa.CalStandard

objCa: Targeted CA-200 unit (Ca)
lCalStandard: Default calibration mode of the targeted CA-200 unit. (Long)

Explanation:

This property sets the CA-200 unit’s default calibration mode, or gets the CA-200 unit's currently set
default calibration mode.

The CA-100Plus cannot be set the default calibration mode to 9300K.

lCalStandard = 1 : 6500K
lCalStandard = 2 : 9300K

67

CＡ Object
Method

Ca ::CalZero
Executes zero-calibration of the CA-200 unit.

Syntax:

objCa.CalZero

objCa: CA-200 unit to be zero-calibrated (Ca)

Explanation:

This method executes zero-calibration of the CA-200 unit identified by the Ca object.

68

CＡ Object
Method

Ca ::Measure
Executes measurement.

Syntax:

objCa.Measure

objCa: Targeted CA-200 unit (Ca)

Explanation:

This method causes the targeted CA-200 unit to execute measurement.

69

CＡ Object
Method

Ca ::SetAnalogRange
Sets the range of the CA-200 unit's analog display.

Syntax:

objCa.SetAnalogRange sRange1, sRange2

objCa: Targeted CA-200 unit (Ca)
sRange1: Range setting 1 (Input: Single)
sRange2: Range setting 2 (Input: Single)

Explanation:

This method sets the display range of the targeted CA-200 unit's analog display. The valid range is as
follows:

 99 ≥ sRange1,2 ≥ 0.1

You can set the range every 1 steps among 10 to 99 and every 0.1 steps among 0.1 to 9.9.

70

CＡ Object
Method

Ca :: GetAnalogRange
Gets the range of the CA-200 unit's analog display.

Syntax:

objCa.GetAnalogRange sRange1, sRange2

objCa: Targeted CA-200 unit (Ca)
sRange1: Range getting 1 (Output: Single)
sRange2: Range getting 2 (Output: Single)

Explanation:

This method gets the display range of the targeted CA-200 unit's analog display.

71

CＡ Object
Method

Ca ::SetFMAAnalogRange(Only the applicable model)
Sets the analog display range used by the CA-210 for flicker*1 measurement.

Syntax:

objCa.SetFMAAnalogRange sRange

objCa: Targeted CA-210 unit (Ca)
sRange: Range setting 1 (Input: Single)

Explanation:

This method sets the analog display range used by the CA-210 for flicker*1 measurement. The valid
range is as follows:

 99 ≥ sRange ≥ 0.1

You can set the range every 1 steps among 10 to 99 and every 0.1 steps among 0.1 to 9.9.

*1. Contrast flicker method

72

CＡ Object
Method

Ca ::GetFMAAnalogRange(Only the applicable model)
Gets the analog display range used by the CA-210 for flicker measurement.

Syntax:

objCa.GetFMAAnalogRange sRange

objCa: Targeted CA-210 unit (Ca)
sRange: Range getting 1 (Output: Single)

Explanation:

This method gets the analog display range used by the CA-210 for flicker measurement.

73

CＡ Object
Method

Ca ::SetPWROnStatus
Sets the CA-200 into PWRON state.

Syntax:

objCa.SetPWROnStatus

objCa: Targeted CA-200 unit (Ca)

Explanation:

This method sets the CA-200 unit into PWRON state. Specifically, it sets the following:

① DisplayMode
② SyncMode
③ Probe.Number
④ Memory.ChannelNO

74

CＡ Object
Method

Ca :: SetDisplayProbe
Designates the probe that will be used as the CA-200's display probe.

Syntax:

objCa.SetDisplayProbe lDisplayProbe

objCa: Targeted CA-200 unit (Ca)
lDisplayProbe: ID number of probe to be used as display probe (Input: Long)

Explanation:

This method selects the probe that will be used as the display probe. The probe is designated using its
ID number.

75

CＡ Object
Method

Ca ::SetAnalyzerCalMode
Sets the CA-200 unit into display-characteristics input mode.

Syntax:

objCa.SetAnalyzerCalMode

objCa: Targeted CA-200 unit (Ca)

Explanation:

This method sets the targeted CA-200 unit into display-characteristics input mode. After setting the
CA-200 unit into this mode, you can proceed to use the other methods related to display-characteristics
input. This method is available only in the analyzer-mode.

Please refer to section 3.2.1, Managing CA-200 Calibration and CA-200 Calibration Data for the
information how to input display-characteristics in the analyzer-mode.

76

CＡ Object
Method

Ca :: ResetAnalyzerCalMode
Takes the CA-200 unit out of display-characteristics input mode, and returns it to normal mode.

Syntax:

objCa.ResetAnalyzerCalMode

objCa: Targeted CA-200 unit (Ca)

Explanation:

This method, when directed at a CA-200 unit that is in display-characteristics input mode, resets that
unit into normal mode. All previously entered display-characteristics input is discarded.

77

CＡ Object
Method

Ca ::SetAnalyzerCalData
Executes input of display-characteristics data (standard values).

Syntax:

objCa.SetAnalyzerCalData lClr

objCa: Targeted CA-200 unit (Ca)
lClr: Color for which display-characteristics input data is to be entered (Input: Long)

Explanation:

This method executes input of display-characteristics standard values at the targeted CA-200 unit.
Specifically, the method causes current measurement results to be input as the characteristic values for
the designated color. Argument values are as follows.

lClr = 0 : RED
lClr = 1 : GREEN
lClr = 2 : BLUE
lClr = 3 : WHITE

78

CＡ Object
Method

Ca ::Enter
Writes calibration data (matrix calibration data, white calibration data, or display-characteristics data)
into memory.

Syntax:

objCa.Enter

objCa: Targeted CA-200 unit (Ca)

Explanation:

This method causes the targeted CA-200 to write the already input calibration information (matrix
calibration data, white calibration data, or display-characteristics data) into its currently selected
memory channel. When the method is finished normally, it is returned to the usual mode.

79

CＡ Object
Method

Ca :: SetLvxyCalMode
Sets the CA-200 unit into arbitrary calibration mode.

Syntax:

objCa.SetLvxyCalMode

objCa: Targeted CA-200 unit (Ca)

Explanation:

This method sets the targeted CA-200 unit into arbitrary calibration mode. After setting the CA-200
unit into this mode, you can proceed to use the other methods related to arbitrary calibration. This
method is available only in the color/brightness measurement mode.

Please refer to section 3.2.1, Managing CA-200 Calibration and CA-200 Calibration Data for the
information how to execute arbitrary calibration in the color/brightness measurement mode.

80

CＡ Object
Method

Ca :: ResetLvxyCalMode
Takes the CA-200 unit out of arbitrary calibration mode and returns it to normal mode.

Syntax:

objCa.ResetLvxyCalMode

objCa: Targeted CA-200 unit (Ca)

Explanation:

This method, when directed at a CA-200 unit that is in arbitrary calibration mode, resets that unit into
normal mode. All previously entered arbitrary-calibration input is discarded.

81

CＡ Object
Method

Ca:: SetLvxyCalData
Executes input of arbitrary calibration data (measured values and calibration values).

Syntax:

objCa.SetLvxyCalData lClr, sx, sy, sLv

objCa: Targeted CA-200 unit (Ca)
lClr: Color for which data is to be entered (Input: Long)
sx: x calibration value (Input: Single)
sy: y calibration value (Input: Single)
sLv: Lv calibration value (Input: Single)

Explanation:

This method executes input of display-characteristics arbitrary calibration data (measured values and
calibration values) at the targeted CA-200 unit. Specifically, the method causes the current
measurement results and the argument-passed calibration values to be entered as arbitrary calibration
data for the argument-specified color.

lClr = 0 : RED
lClr = 1 : GREEN
lClr = 2 : BLUE
lClr = 3 : WHITE

82

CＡ Object
Event

Ca::ExeCalZero
Notifies the client that the CA-200 unit requires zero-calibration.

Syntax:

Dim WithEvents objCaSync As Ca

Set objCaSync = objCa

Private Sub objCaSync_ExeCalZero()

 MsgBox "Cal Zero"

 objca.CalZero

End Sub

objCa: Targeted CA-200 unit (Ca)

Explanation:

If temperature changes some predetermined amount from what it was at the time of the last
zero-calibration, the CA-200 unit will append to its measurement results a message indicating that
zero-calibration must be carried out again. Upon detecting this message, the Ca object generates the
ExeCalZero event.

Note that the CA-200 unit itself will display "E2".

83

4.4 Memory Object

The Memory object represents the CA-200 unit's memory channels.

Explanation:

The Memory object represents the CA-200 unit's memory channels. You use this object's properties and
methods to select and operate on the CA-200 unit's memory channels.

84

Memory Object: Properties, Methods, and Collections

Properties/Collections:

ChannelNO

ChannelID

Methods:

GetReferenceColor

SetChannelID

GetMemoryStatus

CheckCalData

CopyToFile

CopyFromFile

Events:

None

85

Memory Object
Property

Memory::ChannelNO
Specifies the CA-200 unit's memory channel, or gets the current selection. Selection is expressed by
channel number.

Syntax:

①Setting
objMemory.ChannelNO = lCh

objMemory: Targeted CA-200's memory channels (Memory)
lCh: Memory channel selection (Long)

②Obtainment

lCh = objMemory.ChannelNO

lCh: Currently selected memory channel (Long)
objMemory: Targeted CA-200's memory channel space (Memory)

Explanation:

This property selects a memory channel for the CA-200 unit, or returns the current selection. Note that
the property's channel argument identifies the channel by its channel number on the CA-200 unit.

Range setting：0～99ch

86

Memory Object
Property

Memory::ChannelID
Selects the CA-200 unit's memory channel, or gets the current selection. Selection is expressed by
channel ID name.

Syntax:

①Setting
objMemory.ChannelID = strID

objMemory: Targeted CA-200's memory channels (Memory)
strID: Memory channel selection (String)

②Obtainment
strID = objMemory.ChannelNO

strID: Currently selected memory channel (String)
objMemory: Targeted CA-200's memory channels (Memory)

Explanation:

This property selects a memory channel on the CA-200 unit, or returns the current selection. Note that
the property's channel argument identifies the channel by its channel ID name.

87

Memory Object
Method

Memory::GetReferenceColor
Gets the reference (white) color setting for the selected memory channel.

Syntax:

objMemory.GetReferenceColor strID, sRclr1, sRclr2, sRclr3

objMemory: Memory channels (Memory)
strID: ID name of targeted probe (Input: String)
sRclr1: Returned reference (white) color's x value (Output: Single)
sRclr2: Returned reference (white) color's y value (Output: Single)
sRclr3: Returned reference (white) color's Lv value (Output: Single)

Explanation:

This method gets the reference (white) color setting of the CA-200's currently selected memory channel.
Note that the channel is identified by its channel ID name (probe ID name).

88

Memory Object
Method

Memory::SetChannelID
Sets an ID name for the currently selected memory channel.

Syntax:

objMemory.SetChannelID strID

objMemory: Targeted memory channel (Memory)
strID: ID name setting for the currently selected memory channel (Input: String)

Explanation:

This method sets an ID name for the currently selected memory channel.

89

Memory Object
Method

Memory:: GetMemoryStatus
Gets calibration information from the currently selected memory channel.

Syntax:

objMemory. GetMemoryStatus lNumber, lCProbeSNO, lRProbeSNO, lCalMode

objMemory: Targeted memory channel (Memory)
lNumber: Targeted probe's ID number (Input: Long)
lCProbeSNO: Calibration probe's serial number (Output: Long)
lRProbeSNO: Reference-color probe's serial number (Output: Long)
lCalMode: Calibration mode (Output: Long)

Explanation:

This method gets calibration information about the currently selected memory channel. Specifically, the
method returns calibration information that is stored within the targeted probe's calibration data.

<Information of Calibration Mode>

Calibration mode that will be obtained by the ICal Mode is as follows.
 1～99ch 0ch
CA-210 Universal Measuring Probe
(CA-PU12/15)

５０ ５１ １ ２

CA-210 Small Universal Measuring Probe
(CA-PSU12/15)

６０ ６１ １ ２

CA-210 LCD Flicker Measuring Probe
(CA-P12/15)

１０ １１ １ ２

CA-210 Small LCD Flicker Measuring Probe
(CA-PS12/15)

２０ ２１ １ ２

CA-100Plus Measuring Probe
(CA-P02/05)

１０ １１ １ －

CA-100Plus High Luminance Measuring Probe
(CA-PH02/05)

２０ ２１ １ －

 White
Calibration

Matrix
Calibration

Konica
Minolta
6500K
Matrix

Calibration

Konica
Minolta
9300K
Matrix

Calibration

90

Memory Object
Method

Memory:: CheckCalData
Compares the calibration data in the currently selected memory channel against calibration data held in
the specified calibration data file, which was made by CopyToFile method of Memory object, with
ful-path.

Syntax:

lResult = objMemory.CheckCalData (lNumber, strFileName)

lResult: Result of comparison (Long)
objMemory: Targeted memory channel (Memory)
lNumber: Probe ID number of probe to be checked (Input: Long)
strFileName: Name of calibration data file to be used for comparison (Input: String)
lRProbeSNO: Reference-color probe's serial number (Output: Long)

 lCalMode: Calibration mode (Output: Long)

Explanation:

This method compares the calibration data in the currently selected memory channel (the calibration
data for the specified probe) against the calibration data stored in the designated calibration data file. If
the data match, the method returns a 0; if the data do no match, it returns a nonzero value.

91

Memory Object
Method

Memory:: CopyToFile
Copies the calibration data from the currently selected memory channel into a file with ful-path.

Syntax:

objMemory.CopytoFile lNumber, strFileName

objMemory: Targeted memory channel (Memory)
lNumber: Probe ID number of probe whose data is to be copied (Input: Long)
strFileName: Filename for destination calibration file (Input: String)

Explanation:

This method copies data from the currently selected memory channel (the calibration data for the
specified probe) into a file with the specified file name.

92

Memory Object
Method

Memory:: CopyFromFile
Copies the calibration data from the specified file with ful-path into the currently selected memory
channel.

Syntax:

objMemory.CopyFromFile lNumber, strFileName

objMemory: Targeted memory channel (Memory)
lNumber: Probe ID number of destination probe (Input: Long)
strFileName: Filename of source calibration file (Input: String)

Explanation:

This method copies calibration data from the specified file into the designated probe of the currently
selected memory channel.

93

4.5 Probes Collection

Collection of measurement probes connected to the CA-200 unit.

Explanation:

The Probes collection is the collection of probes connected to the CA-200 unit.

When you connect a CA-200 unit using the Ca200.SetConfiguration method, the corresponding
Probe objects are created (one for each of the connected probes) and are added as members to the
Probes collection. You can then use the collection's methods and properties to get the Probe object of
any of the connected probes.

94

Probes Collection: Properties, Methods, and Collections

Properties/Collections:

Item

Count

ItemOfNumber

Methods:

SetProbeID

Events:

None

95

Probes Collection
Property

Probes::Item
Gets the specified probe from the collection of probes connected to the CA-200 unit.

Syntax:

Dim objProbe as Probe

Set objProbe = objProbes.Item(vIndexOrID)

objProbe: Retrieved probe (Probe)
obj.Probes: Collection of connected probes (Probes)
vIndexOrID: Index value or ID name of the retrieved probe (Input: Variant)

Explanation:

Use this property to get a probe from the collection of probes connected to the CA-200 unit. Identify
the probe either by its index value or its ID name.

96

Probes Collection
Property

Probes::Count
Gets the count of the connected probes.

Syntax:

lCount = objProbes.Count

lCount: Number of connected probes (Long)
objProbes: Collection of connected probes (Probes)

Explanation:

This property gets the count of probes connected to the CA-200 unit. Specifically, it returns the number
of Probe objects in the Probes collection.

97

Probes Collection
Property

Probes:: ItemOfNumber
From the collection of connected probes, gets the probe identified by the specified ID number.

Syntax:

Dim objProbe as Probe

Set objProbe = objProbes.ItemOfNumber(lNumber)

objProbe: Retrieved probe (Probe)
obj.Probes: Collection of connected probes (Probes)
lNumber: ID number identifying the probe (Long)

Explanation:

Gets the Probe object corresponding to the ID number specified by the lNumber argument.

98

Probes Collection
Method

Probes::SetProbeID
Sets an ID name (alias) for a specified Probe object.

Syntax:

objProbes.SetProbeID lNumber, strID

objProbes: Probes collection containing the Probe object whose ID is being set
lNumber: ID number identifying the Probe object whose ID is being set (Long)
strID: ID name for Probe object (String)

Explanation:

This method sets an arbitrary ID name that can be used to refer to the specified Probe object. While it is
always possible to refer to the Probe object by its ID number or by its index value within the Probes
collection, users may find it more convenient to refer to it by a user-assigned name.

99

4.6 OutputProbes Collection

Indicates a collection of output probes.

Explanation：

The OutputProbes collection is a collection of Probe objects, which are compliant with the probes
that are set as output probe.

A connected probe will be set as an Output Probe by method of the OutputProbes collection or
SetOutputProbe method of the Ca object. After being set as an output probe, compliant Probe
objects will be added to the members of the OutputProbes collection. Specific Output Probes can be
obtained by using method/property of the OutputProbes collection.

100

OutputProbes Collection: Properties, Methods, and Collections

Properties/Collections:

Item

Count

ItemOfNumber

Methods:

Add

AddAll

RemoveAll

Clone

Events:

None

101

OutputProbes Collection
Property

OutputProbes::Item
Gets the specified probe from the collection of output probes.

Syntax:

Dim objProbe as Probe

Set objProbe = objOutputProbes.Item(vIndexOrID)

objProbe: Retrieved probe (Probe)
objOutoutProbes: Collection of output probes (OutputProbes)
vIndexOrID: Index value or ID name of the returned probe (Input: Variant)

Explanation:

Use this property to get a specified probe from a collection of output probes.

102

OutputProbes Collection
Property

OutputProbes::Count
Gets the count of the output probes.

Syntax:

lCount = objOutputProbes.Count

lCount: Number of output probes (Long)
objOutputProbes: Targeted collection of output probes (OutputProbes)

Explanation:

This property gets the count of the probes in the targeted collection of output probes.

103

OutputProbes Collection
Property

OutputProbes::ItemOfNumber
From the collection of output probes, gets the probe identified by the specified ID number.

Syntax:

Dim objProbe as Probe

Set objProbe = objOutputProbes.ItemOfNumber(lNumber)

objProbe: Retrieved probe (Probe)
objOutputProbes: Targeted collection of output probes (OutputProbes)
lNumber: ID number identifying the output probe to be retrieved (Long)

Explanation:

This property gets, from the specified output probe collection, the output probe corresponding to the ID
number given by the lNumber argument.

104

OutputProbes Collection
Method

OutputProbes::Add

Adds a probe to the specified collection of output probes.

Syntax:

objOutputProbes.Add(vIndexOrID)

objOutputProbes: Targeted collection of output probes (OutputProbes)
vIndexOrID: ID name of the probe to be added to the collection (Input: String)

Explanation:

Use this method to designate a probe as an output probe. The method adds the specified probe to the
specified collection of output probes.

105

OutputProbes Collection
Method

OutputProbes::AddAll
Adds all connected probes to the collection of output probes.

Syntax:

objOutputProbes.AddAll

objOutputProbes: Targeted collection of output probes (OutputProbes)

Explanation:

Use this method to designate all connected probes as output probes. This method adds all connected
probes to the collection of output probes.

106

OutputProbes Collection
Method

OutputProbes:: RemoveAll
Deletes all designature of output probes.

Syntax:

objOutputProbes.RemoveAll

objOutputProbes: Targeted collection of output probes (OutputProbes)

Explanation:

This method deletes the designation of the output probes collection.

107

OutputProbes Collection
Method

OutputProbes:: Clone
Gets a copy of the collection of output probes.

Syntax:

Set objProbes = objOutputProbes.Clone

objProbes: Copy of the output probes collection (Probes)
objOutputProbes: Targeted collection of output probes (OutputProbes)

Explanation:

This method generates a copy of the output probes collection.

108

4.7 Probe Object

The Probe object represents a probe connected to the CA-200 unit.

Explanation:

Each Probe object represents a physically connected probe. When you connect a CA-200 unit using
the Ca200.SetConfiguration method, the method creates a Probe object for each of the probes
that are connected to the CA-200. When you execute measurement with a CA-200 unit, the
measurement results are reflected in the corresponding Probe objects of the CA-200 unit's Ca object.

109

Probe Object: Properties, Methods, and Collections

Properties/Collections:

RD/RJEITA/RFMA/RAD

X/Y/Z

sx/sy

Lv/LvfL

ud/vd/LsUser/usUser/vsUser/dEUser

T/duv

FlckrJEITA

FlckrFMA

Number/SerialNO

ID

R/G/B

Methods:

GetSpectrum

Events:

None

110

Probe Object
Property

Probe::RD/RJEITA/RFMA/RAD
Use these properties to get the measurement-results status code for the corresponding measurement
(color measurement, JEITA flicker measurement*1, FMA flicker measurement*2, and analyzer-mode, respectively).

Syntax:

lRD = objProbe.RD

lRD: Status code associated with CA's color measurement results (Long)
objProbe: Probe for which code is returned (Probe)

Explanation:

Use these properties to get the status codes for the corresponding CA measurement results.
*1. JEITA flicker method
*2. Contrast flicker method

【Supplement】 About the Measurement Result Property

Even when measurement results are obtained without dysfunctions, you can find out problematic points of the measurement by the
return value of Measurement Result Property. Also when measurement value is not normal or error cord is returned, you can find out
the cause by Measurement Result Property (below) and Measurement Value Property (the next page).
Example１： In X/Y/Z measurement...
Return value of Measurement Value Property（X/Y/Z） ：Measurement value (normal)

Return value of Measurement Result Property（RD） ：4

These indicate that the value is outside the measurement range (which corresponds to the flashing indicator on hardware).

Example ２： In the case of error code 426...
As the cause indicates a wide range, you can find out if the cause is in hardware side or in display setting by using Measurement Result Property

and Measurement Value Property, although ‘the cause’ is defined as ‘Either of the probes failed in measurement and that occurred when the display

setting was outside the measurement range.

About the Measurement Result Property （RD/RAD/RJEITA/RFMA）
0 Normal completion

1 ① A probe in arbitrary calibration/standard color setting is different from a probe in measurement.

2 ② An ambient temperature changed by a certain value since a zero calibration.

4 ③ Same as outside the measurement range (same as the flashing indicator).

3 ④ The above ① and ② occurred at the same time.

5 ⑤ The above ① and ③ occurred at the same time.

6 ⑥ The above ② and ③ occurred at the same time.

7 ⑦ The above ① ② ③ occurred at the same time.

10 ⑧ Measurement was executed before zero calibration.

15 ⑨ Occurrence of hold error

20 ⑩ An invalid external synchronization signal (set an external synchronization signal when less than 40 Hz, over 200 Hz)

22 ⑪ Over the measurement range

23 ⑫ Offset error

50 ⑬ Measurement value is over 100% in the flicker mode.

51 ⑭ External synchronizing signal is over 130 Hz in the FMA flicker mode.

52 ⑮ Measurement value in the flicker mode is equivalent to Konica Minolta standard white calibration and less than
around 0.1cd/m2 or an equivalent.

53 ⑯ Flicker measurement is being attempted using a Universal Measuring Probe CA-PU12 or CA-PU15 or a Small
Universal Measuring Probe CA-PSU12 or CA-PSU15.

∗0.1cd/m2 when the probe, CA-P12/15 is attached. Less than 0.3cd/m2 or an equivalent when the probe, CA-PS12/15 is attached.

111

Probe Object
Property

About Measurement Value Property

After the measurement (normal)
Measurement value property

Before
measurement Under normal conditions

Under abnormal
conditions

X/Y/Z -1 Measurement value -1
Lv/LvfL -1 Measurement value -1
LsUser/usUser/vsUser/dEUser -999 Measurement value -999
FlckrJEITA -999 Measurement value -999
R/G/B -1 Measurement value -1
sx/sy -1 Measurement value -1
ud/vd -1 Measurement value -1
T/duv -1 Measurement value -1
FlckrFMA 0 Measurement value -1

When Measurement value property is obtained before the measurement, the property value will be either －１
or －999 (Please see the table above). Also when measurement value property is obtained after the
measurement, the measurement value can be obtained under normal conditions but under abnormal conditions it
will be －１ or －999. Furthermore, the following cases are possible under abnormal conditions.

 Color 1 Color 2 FMA JEITA

① Outside the measurement range (over the high intensity) -1 -1(-999) -1 -999

② Outside the measurement range (under the low intensity) Non-applicable Non-applicable -1 -999

③ Frequency range is not set as 40～200 Hz -1 -1(-999) -1 Non-applicable

④ Frequency range is not set as 40～130 Hz Non-applicable Non-applicable -1 Non-applicable

⑤ Outside the coverage of the microprocessing Non-applicable -1(-999) -1 -999

⑥ Property was obtained before the measurement -1 -1(-999) -1 -999

Color 1 : T, duv,usUser,LsUser,dEUser
Color 2: X/Y/Z,Lv,LvfL,sx/sy,R/G/B

112

Probe Object
Property

Probe::X/Y/Z
These properties get the measurement results in XYZ color space.

Syntax:

sX = objProbe.X

sY = objProbe.Y

sZ = objProbe.Z

sX, sY, sZ: X, Y, or Z value of measurement result in XYZ color space (Single)
objProbe: Probe for which result is returned (Probe)

Explanation:

Use these properties to get the measurement results as expressed in XYZ color space.

113

Probe Object
Property

Probe::sx/sy
These properties get the measurement results in xy color space.

Syntax:

sx = objProbe.sx

sy = objProbe.xy

sx, sy: x or y value of measurement result in xy color space (Single)
objProbe: Probe for which result is returned (Probe)

Explanation:

Use these properties to get the measurement results as expressed in xy color space.

114

Probe Object
Property

Probe::Lv/ LvfL
These properties get the brightness measurement results in cd/m2 (Lv) or fL (LvfL) units.

Syntax:

sLv = objProbe.Lv

sLv: Lv = Y brightness measurement result (Single)
objProbe: Probe for which result is returned (Probe)

Explanation:

Use these properties to get the brightness measurement results.

115

Probe Object
Property

Probe:: ud/vd/ LsUser/usUser/vsUser/dEUser
These properties get the results in u'v' or L*u*v* color space.

Syntax:

sfLs = objProbe.LsUser

sus = objProbe.usUser

svs = objProbe.vsUser

sLs, sus, svs: L*, u* and s* measurement results. (Result in L*u*v* color space.) (Single)
objProbe: Probe for which result is returned (Probe)

Explanation:

Use the Probe object's LsUser, usUser, vsUser, and dEUser properties to get measurement
results in L*u*v* color space. (These values are calculated with reference to standard white). To get
results in u'v' color space, use the Probe object's ud and vd properties.

116

Probe Object
Property

Probe:: T/ duv
Use these properties to get the correlated color temperature and the difference from black-body locus,
as represented in uv color space.

Syntax:

lT = objProbe.T

sduv = objProbe.dUv

lT: Correlated color temperature, in uv color spaced (Long)
sduv: Difference fro black-body locus, in uv color space (Single)
objProbe: Probe for which result is returned (Probe)

Explanation:

Use these properties to get the correlated color temperature and difference from black-body locus, as
expressed in uv color space.

117

Probe Object
Property

Probe::FlckrJEITA(Only the applicable model)
Gets the JEITA flicker measurement*1.

Syntax:

sFlckrJEITA = objProbe.FlckrJEITA

sFlckrJEITA: Flicker amount (by JEITA measurement*1) (Single)
objProbe: Probe for which result is returned (Probe)

Explanation:

This property gets the JEITA flicker measurement*1 result.

 *1. JEITA flicker method

118

Probe Object
Property

Probe::FlckrFMA(Only the applicable model)
Gets the FMA flicker measurement*1.

Syntax:

sFlckrFMA = objProbe.FlckrFMA

sFlckrFMA: Flicker amount (by FMA measurement*1) (Single)
objProbe: Probe for which result is returned (Probe)

Explanation:

This property gets the FMA (AC/DC) flicker measurement*1 result.

*1 Contrast flicker method

119

Probe Object
Property

Probe::Number/SerialNO
Gets the probe's ID number/SerialNO.

Syntax:

lNumber = objProbe.Number

lProbeSNO = objProbe.SerialNO

objProbe: Targeted probe (Probe)
lNumber: Targeted probe's ID number (Long)
lProbeSNO: Targeted probe's Serial number (String)

Explanation:

This Number property returns the probe's ID number.

This SerialNO property returns the probe's serial number.

120

Probe Object
Property

Probe:: ID
Sets or gets the ID name for the targeted probe.

Syntax:

①Setting
objProbe.ID = strID

objProbe: Targeted probe (Probe)
strID: ID name for the targeted probe (String)

②Obtainment
strID = objProbe.ID

strID: Targeted probe's ID name (String)
objProbe: Targeted probe (Probe)

Explanation:

The client can use this property to set an ID name (alias) for the probe, or to get the current ID name
setting from the probe. The ID name can be used to target a specific Probe object from the Probes
collection.

The default settings are “P1”, “P2”, … for 1, 2, … of the probe ID number specified by
SetConfiguration method of Ca200 Object.

121

Probe Object
Property

Probe::R/G/B
These properties get the analyzer-mode measurement results.

Syntax:

sR = objProbe.R

sG = objProbe.G

sB = objProbe.B

sR, sG, sB: Red, green, blue measurement result (Single)
objProbe: Probe for which result is returned (Probe)

Explanation:

Use these properties to return the analyzer-mode measurement results (red, green, and blue results).

122

Probe Object
Method

Probe::GetSpectrum
Gets the amplitude of each frequency in the JEITA flicker measuring data.

Syntax:

sFlckrElement = objProbe.GetSpectrum (lFrequency)

sFlckrElement: Amplitude of each frequency (Single)
objProbe: Probe for which result is returned (Probe)
lFrequency: Frequency (Long)

Explanation:

Use the method to get the amplitude of each flicker frequency

65 ≥ lFrequency ≥ 6

123

4.8 IProbeInfo Object

Indicates hardware information of the probes connected to CA-200.

Explanation：

IProbeInfo object maintains hardware information (model No./model name) of the connected
probes. Model No./model name can be obtained by using properties of the IProbeInfo object.

124

IProbeInfo Object

Properties:

TypeName

TypeNO

Method:

None

Event:

None

125

IProbeInfo Object
Property

IProbeInfo:: TypeName
Obtains a character string that indicates the type of the connected probes.

Syntax：

Dim objProbeInfo as IProbeInfo

Dim sProbeTypeName as String

Set objProbeInfo = objProbe

sProbeTypeName = objProbeInfo.TypeName

objProbeInfo: Hardware information of the connected probes
sProbeTypeName: A character string of the type to be obtained
objProbe: A connected probe that is an object of the obtainment (Probe)

Explanation：

TypeName property of the IProbeInfo object will be used to obtain a character string that indicates
the type of the connected probe.

The character string will be the value below according to the type of the probe.

<Character string of the type>

sProbeTypeName = “CA-100Plus” Measuring Probe (CA-P02/05)

“CA-100PlusH” High luminance Measuring Probe (CA-PH02/05)

“CA-210U” Universal Measuring Probe (CA-PU12/15)

“CA-210SU” Small Universal Measuring Probe (CA-PSU12/15)

“CA-210” LCD Flicker Measuring Probe (CA-P12/15)

“CA-210S” Small LCD Flicker Measuring Probe (CA-PS12/15)

126

IProbeInfo Object
Property

IProbeInfo:: TypeNO
Obtains a value that indicates the type of the connected probe.

Syntax：

Dim objProbeInfo as IProbeInfo

Dim lProbeTypeNo as Long

Set objProbeInfo = objProbe

lProbeTypeNo = objProbeInfo.TypeNO

objProbeInfo: Hardware information of the connected probe
lProbeTypeNo : Value of the type to be obtained
objProbe : A connected probe that is the object of the obtainment (Probe)

Explanation：

TypeNO property of the IProbeInfo object is used to obtain a value that indicates the type of the
connected probe.

Value will be the value below according to the type of the probe.

<Value of the type>

lProbeTypeNo = 1001 : CA-100Plus Measuring Probe (CA-P02/05)

1002 : CA-100Plus High luminance Measuring Probe (CA-PH02/05)

2102 : CA-210 Universal Measuring Probe (CA-PU12/15)

2103 : CA-210 Small Universal Measuring Probe (CA-PSU12/15)

2100 : CA-210 LCD Flicker Measuring Probe (CA-P12/15)

2101 : CA-210 Small LCD Flicker Measuring Probe (CA-PS12/15)

127

5. Error Codes

Error No.* Message (SDK Command Errors) Cause

401 --cannot execute now
--check context Inappropriate command usage.

402 --invalid argument
--check value Invalid argument.

403 --duplication of name or ID, etc
--check context Value or specification (ID, etc) already exists.

405 --API Fail
--Restart Program SDK-internal API execution error

406 --cannot open cal_data_file
--check filename Failed to open calibration file.

407 --invalid CA number
--check value Invalid CA ID number.

408 --invalid RS/USB ID
--check value Invalid comm-port specification.

409 --invalid Baudrate
--check value Invalid baud rate specification.

410 --null pointer
--check program Invalid pointer argument.

411 --Probe1 should be connected
--check argument Probe #1 not connected.

412 --probe not connected
--check program Designated probe not connected.

413 --invalid x/y
--check value Invalid x or y value.

414 --invalid Lv
--check value Invalid Lv value.

415 --invalid clr
--check value Invalid color specification.

416 --invalid index
--check value Invalid index-value specification.

417 --invalid CA ID
--check ID Invalid CAID specification.

418
--invalid Memory Channel
number
--check value

Invalid specification of memory-channel number.

419 --invalid Memory Channel ID
--check value Invalid specification of memory-channel ID name.

420 --ID is too long(>10)
--check value Character string for memory-channel ID is too long.

421 --invalid Probe number
--check value Invalid specification of probe No.

422 --invalid Probe ID
--check value Invalid specification of probe ID name.

423 --Data value is too low
--check value Data value is too low.

424 --Data value is too high
--check value Data value is too high.

425 --nonexistent object
--check program Passed a reference to a nonexistent object.

426
--measurement fail

--check probe/display_setting

One or more output probes failed to execute
measurement.

External sync signal not connected.

128

Error No.* Message (SDK Command Errors) Cause

428
--cannot cal channel 0

--check program Cannot calibrate memory channel 0

429
--No output probes have been
specified
--check program

No output probes have been specified.

503 --unacceptable calibration data
--check value Invalid specification of calibration value.

504 --unacceptable analog range data
--check value Invalid specification of analog-display range.

506 --matrix calibration error
--check calibration data

Error of matrix calibration data.
(Invalid calibration data.)

510 --invalid command
--check program Invalid command specification.

520
--no sync_signal
--input an external
synchronization signal

External sync signal not connected.

521 --too bright
--block light Not dark enough for zero-calibration.

522
--over
--set a color within CA's
measuring range

Measurement out of range.

523 --offset error
--perform zero_calibration Zero-calibration required.

524
--over in TduvLv mode
--set a color within CA's
measuring range

Measurement out of range (T⊿uv mode).

553 --flicker error
--check probe type This type of probe cannot measere the flicker.

*The error number is value of the low-order 16 bits of the code returned by the error object.

129

6. Installing the USB Driver

When you connect to the USB port, the system will automatically prompt for the location of the USB driver.
Respond to the prompt by designating the CD-ROM drive and the folder of the OS (‘Win2000’ for
Windows 98, Windows Me, or Windows 2000, ‘WinXP’ for Windows XP or later).

For installing the USB driver under Windows Vista, it will be automatically installed, when the
CD-ROM is set.
For installing the USB driver under Windows XP, the dialog box which confirms User Account
Control appears after designating the location of the USB driver. Select ‘Continue’.

The program will then install the driver. The driver makes it possible for the CA-200 units to be recognized
as USB devices.

9222-1891-16 © 2002-2007 KONICA MINOLTA SENSING, INC.
AHHAPX

 　Printed in Japan

	Foreword
	System Requirements
	Notes on Use of SDK
	1. How to Install (or Uninstall) the SDK
	2. SDK Object Hierarchy
	2.1 Object, Collection
	2.2 Method
	2.3 Property
	2.4 Event

	3. Writing Programs with the SDK
	3.1 Basics
	3.2 Applications

	4. SDK Reference
	4.1 Ca200 Object
	4.2 Cas Collection
	4.3 CＡ Object
	4.4 Memory Object
	4.5 Probes Collection
	4.6 OutputProbes Collection
	4.7 Probe Object
	4.8 IProbeInfo Object

	5. Error Codes
	6. Installing the USB Driver

